Additive manufacturing (AM) techniques open up a range of new possibilities for the design of electrochemical systems, affording us the ability to overcome limitations and difficulties that traditional production processes face. Here we present a novel electrode design, realized through selective laser melting of metal powders, with an integrated gas (reactant) delivery system. This architecture results in significantly (∼40%) enhanced hydrogen oxidation performance as compared with a control system. As such, this work serves as a proof-of-concept to highlight the wide array of designs that can be readily achieved due to recent developments in AM technologies.