A Deep Learning Approach Considering Image Background for Pneumonia Identification Using Explainable AI (XAI)

人工智能 鉴定(生物学) 深度学习 计算机科学 肺炎 模式识别(心理学) 机器学习 地理 生物 植物 考古
作者
Yuting Yang,Gang Mei,Francesco Piccialli
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:11
标识
DOI:10.1109/tcbb.2022.3190265
摘要

Pneumonia mainly refers to lung infections caused by pathogens, such as bacteria and viruses. Currently, deep learning methods have been applied to identify pneumonia. However, the traditional deep learning methods for pneumonia identification take less account of the influence of the lung X-ray image background on the model's testing effect, which limits the improvement of the model's accuracy. In this paper, we propose a deep learning method that considers image background factors and analyzes the proposed method with explainable deep learning for explainability. The essential idea is to remove the image background, improve the pneumonia recognition accuracy, and apply the Grad-CAM method to obtain an explainable deep learning model for pneumonia identification. In the proposed approach, (1) preliminary deep learning models for pneumonia X-ray image identification without considering the background are built; (2) deep learning models for pneumonia X-ray image identification with background consideration are built to improve the accuracy of pneumonia identification; (3) Grad-CAM method is employed to analyze the explainability. The proposed approach improves the accuracy of pneumonia identification, and the highest accuracy of VGG16 reaches 95.6%. The proposed approach can be applied to real pneumonia identification for early detection and treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HYUN完成签到,获得积分10
1秒前
铁臂阿童木完成签到,获得积分10
1秒前
李嘉图的栗子完成签到,获得积分10
2秒前
eric发布了新的文献求助10
3秒前
3秒前
jane123发布了新的文献求助30
3秒前
脑洞疼应助zzz采纳,获得10
4秒前
4秒前
希望天下0贩的0应助wenze采纳,获得10
5秒前
5秒前
5秒前
二丫完成签到,获得积分10
6秒前
叶知秋发布了新的文献求助10
7秒前
7秒前
初心发布了新的文献求助10
7秒前
小鞋完成签到,获得积分10
8秒前
我是老大应助凉生采纳,获得10
9秒前
学啊学啊发发完成签到,获得积分10
9秒前
小面包狗发布了新的文献求助10
10秒前
彭于晏应助wtzhang16采纳,获得10
11秒前
12秒前
13秒前
hhh完成签到,获得积分10
13秒前
繁荣的天玉完成签到,获得积分10
14秒前
14秒前
ZhuYJ发布了新的文献求助10
14秒前
小蘑菇应助初心采纳,获得10
14秒前
叶知秋完成签到,获得积分10
15秒前
万能图书馆应助横A采纳,获得10
15秒前
xzy998发布了新的文献求助10
16秒前
17秒前
CipherSage应助酷酷的树叶采纳,获得10
17秒前
18秒前
共享精神应助liangzhao采纳,获得10
19秒前
木头完成签到 ,获得积分10
21秒前
wwww完成签到 ,获得积分10
23秒前
小六完成签到,获得积分10
23秒前
23秒前
酷波er应助健忘黄豆采纳,获得10
24秒前
斯文败类应助听思念渐近采纳,获得10
26秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137988
求助须知:如何正确求助?哪些是违规求助? 2788970
关于积分的说明 7789245
捐赠科研通 2445350
什么是DOI,文献DOI怎么找? 1300312
科研通“疑难数据库(出版商)”最低求助积分说明 625878
版权声明 601046