AF-GCN: Attribute-Fusing Graph Convolution Network for Recommendation

计算机科学 图形 理论计算机科学 数据挖掘 拉普拉斯矩阵 卷积(计算机科学) 机器学习 人工神经网络
作者
Guowei Yue,Rui Xiao,Zhongying Zhao,Chao Li
出处
期刊:IEEE Transactions on Big Data [IEEE Computer Society]
卷期号:9 (2): 597-607 被引量:14
标识
DOI:10.1109/tbdata.2022.3192598
摘要

Graph Convolution Networks (GCNs) are playing important role and widely used in recommendation systems. This is benefited from their capability of capturing the collaborative signals of higher-order neighbors by exploiting the graph structure. GCN-based methods have made great success in improving recommending performance, but still suffer from the severe problem of data sparsity. An effective solution to alleviate the data sparsity is to introduce attribute information. However, existing GCN-based methods hardly capture the complex attribute information of users and items and the complicated relationships between users, items, and attributes simultaneously. To address the above problems, we propose a novel attribute-fusing graph convolution network model called AF-GCN. Specifically, we first propose an attention-based attribute fusion strategy by taking account of different effects of attributes. Then, we construct a complex graph containing four kinds of nodes. Finally, we design a particular Laplacian matrix, which leverages the attribute information through graph structure to learn user and item representations better. Extensive experimental results on three real-world datasets demonstrate that the proposed AF-GCN significantly outperforms state-of-the-art methods. The source codes of this work are available at https://github.com/xiaorui-mnaire/af-gcn .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
善学以致用应助tql9211采纳,获得10
2秒前
研友_VZG7GZ应助QYPANG采纳,获得10
2秒前
gyq2006完成签到,获得积分10
3秒前
JoySue发布了新的文献求助10
3秒前
马马发布了新的文献求助10
4秒前
淡然冬灵发布了新的文献求助10
4秒前
4秒前
4秒前
852应助简单山水采纳,获得10
4秒前
4秒前
4秒前
5秒前
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
Jasper应助luogan采纳,获得10
6秒前
loski完成签到,获得积分10
6秒前
郑泽航完成签到,获得积分20
7秒前
7秒前
8秒前
wanghao发布了新的文献求助10
8秒前
9秒前
白白发布了新的文献求助10
9秒前
碧蓝的向梦完成签到,获得积分20
9秒前
9秒前
善学以致用应助llm采纳,获得10
9秒前
道心发布了新的文献求助10
10秒前
兴奋的问旋完成签到,获得积分10
10秒前
陶征应助有魅力老头采纳,获得10
10秒前
Qing发布了新的文献求助10
10秒前
Xue发布了新的文献求助10
11秒前
11秒前
完美世界应助风趣的凝雁采纳,获得10
11秒前
yyyhhh发布了新的文献求助10
11秒前
该饮茶了发布了新的文献求助10
11秒前
11秒前
马马完成签到,获得积分10
12秒前
12秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979146
求助须知:如何正确求助?哪些是违规求助? 3523056
关于积分的说明 11215854
捐赠科研通 3260487
什么是DOI,文献DOI怎么找? 1800049
邀请新用户注册赠送积分活动 878813
科研通“疑难数据库(出版商)”最低求助积分说明 807092