AF-GCN: Attribute-Fusing Graph Convolution Network for Recommendation

计算机科学 图形 理论计算机科学 数据挖掘 拉普拉斯矩阵 卷积(计算机科学) 机器学习 人工神经网络
作者
Guowei Yue,Rui Xiao,Zhongying Zhao,Chao Li
出处
期刊:IEEE Transactions on Big Data [IEEE Computer Society]
卷期号:9 (2): 597-607 被引量:24
标识
DOI:10.1109/tbdata.2022.3192598
摘要

Graph Convolution Networks (GCNs) are playing important role and widely used in recommendation systems. This is benefited from their capability of capturing the collaborative signals of higher-order neighbors by exploiting the graph structure. GCN-based methods have made great success in improving recommending performance, but still suffer from the severe problem of data sparsity. An effective solution to alleviate the data sparsity is to introduce attribute information. However, existing GCN-based methods hardly capture the complex attribute information of users and items and the complicated relationships between users, items, and attributes simultaneously. To address the above problems, we propose a novel attribute-fusing graph convolution network model called AF-GCN. Specifically, we first propose an attention-based attribute fusion strategy by taking account of different effects of attributes. Then, we construct a complex graph containing four kinds of nodes. Finally, we design a particular Laplacian matrix, which leverages the attribute information through graph structure to learn user and item representations better. Extensive experimental results on three real-world datasets demonstrate that the proposed AF-GCN significantly outperforms state-of-the-art methods. The source codes of this work are available at https://github.com/xiaorui-mnaire/af-gcn .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
杨柳完成签到,获得积分10
刚刚
刚刚
1秒前
打打应助爱听歌老1采纳,获得10
1秒前
如意千万发布了新的文献求助10
2秒前
2秒前
LL发布了新的文献求助10
3秒前
3秒前
搜集达人应助无助的小许采纳,获得10
4秒前
苗浩阳发布了新的文献求助10
4秒前
5秒前
5秒前
温暖宛完成签到 ,获得积分20
5秒前
yule完成签到,获得积分10
5秒前
阿南完成签到 ,获得积分10
6秒前
6秒前
star应助盼盼采纳,获得10
7秒前
肚子藤完成签到,获得积分10
7秒前
Mothball完成签到,获得积分10
7秒前
8秒前
8秒前
小松奈奈发布了新的文献求助10
9秒前
chenling完成签到,获得积分10
10秒前
温暖宛关注了科研通微信公众号
10秒前
10秒前
滨滨发布了新的文献求助10
10秒前
bioinfghost完成签到 ,获得积分10
10秒前
安静的怜蕾完成签到,获得积分10
10秒前
无助的小许完成签到,获得积分10
11秒前
李健应助齐羽采纳,获得10
11秒前
光亮醉波发布了新的文献求助10
12秒前
nannan发布了新的文献求助10
13秒前
斯文败类应助风飞纷飞采纳,获得10
13秒前
LMH发布了新的文献求助10
13秒前
科研通AI6应助熊某某采纳,获得10
14秒前
bioinfghost关注了科研通微信公众号
15秒前
15秒前
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
Conductance of concentrated aqueous solutions of electrolytes. I. Strong uni-univalent electrolytes 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5016918
求助须知:如何正确求助?哪些是违规求助? 4256792
关于积分的说明 13266719
捐赠科研通 4060949
什么是DOI,文献DOI怎么找? 2221077
邀请新用户注册赠送积分活动 1230376
关于科研通互助平台的介绍 1152950