韧皮部
过剩1
葡萄糖转运蛋白
脂多糖
药理学
糖酵解
巨噬细胞
化学
炎症
生物化学
体外
免疫学
医学
内科学
酶
胰岛素
作者
Yiyan Songyang,Wen Li,Wenqiang Li,Ji An Yang,Tianbao Song
标识
DOI:10.1016/j.intimp.2022.109049
摘要
The increased level of glycolysis in macrophage aggravates lipopolysaccharide (LPS)-induced acute lung injury (ALI). Glucose transporter 1 (GLUT1) serves as a ubiquitously expressed glucose transporter, which could activate inflammatory response by mediating glycolysis. Phloretin (PHL), an apple polyphenol, is also an inhibitor of GLUT1, possessing potent anti-inflammatory effects in various diseases. However, the potential role of PHL in ALI remains unclear till now. This study aims to investigate the impacts of PHL on ALI as well as its possible mechanisms. A mouse ALI model was established via intratracheal injection of LPS. LPS-induced primary macrophages were used to mimic in vitro ALI. Mice were pretreated with low or high dosage of PHL for 7 days via intragastric administration once a day before LPS injection. The results showed that PHL pretreatment significantly prevented LPS-induced lung pathological injury and inflammatory response. Meantime, PHL pretreatment also decreased the level of glycolysis in macrophage during ALI. In terms of mechanism, PHL inhibited the mRNA and protein expression of GLUT1. In vitro experiments further showed GLUT1 overexpression in macrophage by infection with lentivirus could abolish the inhibition of inflammation and glycolysis mediated by PHL, suggesting that GLUT1 was essential for the protection of PHL. Taken together, PHL pretreatment may protect against LPS-induced ALI by inhibiting glycolysis in macrophage in a GLUT1-dependent manner, which may be a candidate against ALI in the future.
科研通智能强力驱动
Strongly Powered by AbleSci AI