Extending Machine Learning Prediction Capabilities by Explainable Ai in Financial Time Series Prediction

系列(地层学) 财务 时间序列 人工智能 计算机科学 机器学习 经济 古生物学 生物
作者
Taha Buğra Çeli̇k,Özgür İcan,Elif Bulut
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
被引量:1
标识
DOI:10.2139/ssrn.4170455
摘要

Prediction with higher accuracy is vital for stock market prediction. Recently, considerable amount of machine learning techniques are proposed which successfully predict stock market price direction. No matter how successful the proposed prediction model, it can be argued that there occur two major drawbacks for further increasing the prediction accuracy. The first one is that, because machine learning methods bear black box nature, the source of inference for the predictions cannot be explained. Furthermore, due to the complex characteristics of the predicted time series, no matter how sophisticated techniques are employed, it would be very difficult to achieve a marginal increase in accuracy that would meaningfully offset the additional computational burden it brings in. For these two reasons, instead of chasing incremental accuracy increases, we propose utilizing an eXplainable Artificial Intelligence (XAI) approach which can be employed for assessing the reliability of the predictions hence allowing decision maker to abstain from poor decisions which are responsible for decrease in overall prediction performance. If there would be a measure of how sure the prediction model is on any prediction, the predictions with a relatively higher reliability could be used to make a decision while lower quality decisions could be avoided. In this study, a novel two-stage stacking ensemble model for stock market direction prediction based on machine learning (ML), empirical mode decomposition (EMD) and XAI is proposed. Our experiments have shown that, proposed prediction model supported with local interpretable model-agnostic explanations (LIME) achieved the highest accuracy of 0.9913 with trusted predictions on the KOSPI dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助科研通管家采纳,获得10
刚刚
852应助科研通管家采纳,获得10
刚刚
bkagyin应助科研通管家采纳,获得10
刚刚
所所应助科研通管家采纳,获得10
1秒前
烟花应助科研通管家采纳,获得30
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
思源应助奇妙的皮皮皮采纳,获得10
1秒前
1秒前
田様应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
2秒前
打打应助lupeichun采纳,获得10
3秒前
海子发布了新的文献求助10
3秒前
3秒前
栗子鱼发布了新的文献求助10
4秒前
英姑应助吃不饱星球球长采纳,获得10
4秒前
加减乘除发布了新的文献求助10
4秒前
未来完成签到,获得积分10
5秒前
赵油油完成签到,获得积分10
7秒前
7秒前
Jimmy完成签到,获得积分10
7秒前
8秒前
8秒前
开心努力毕业版完成签到,获得积分10
8秒前
9秒前
9秒前
西北射天狼完成签到 ,获得积分10
9秒前
9秒前
why发布了新的文献求助10
10秒前
11秒前
解觅荷发布了新的文献求助10
11秒前
mamei完成签到,获得积分10
11秒前
kimi完成签到,获得积分10
12秒前
12秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A technique for the measurement of attitudes 500
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148683
求助须知:如何正确求助?哪些是违规求助? 2799722
关于积分的说明 7836622
捐赠科研通 2457168
什么是DOI,文献DOI怎么找? 1307779
科研通“疑难数据库(出版商)”最低求助积分说明 628265
版权声明 601663