Iterative Learning Tracking Control of High-Speed Trains With Nonlinearly Parameterized Uncertainties and Multiple Time-Varying Delays

火车 控制理论(社会学) 计算机科学 参数化复杂度 迭代学习控制 控制器(灌溉) 理论(学习稳定性) 空气动力学 跟踪(教育) 李雅普诺夫函数 控制工程 工程类 控制(管理) 人工智能 算法 非线性系统 心理学 教育学 地图学 地理 物理 量子力学 机器学习 航空航天工程 农学 生物
作者
Yong Chen,Deqing Huang,Chao Xu,Hairong Dong
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (11): 20476-20488 被引量:1
标识
DOI:10.1109/tits.2022.3183608
摘要

The precise operation control of high-speed trains is pivotal to maintain the safety and efficiency of trains, while the inevitable state delays will seriously attenuate the performance of control system. In this paper, an adaptive iterative learning control (ILC) approach for high-speed trains is presented in the presence of the nonlinearly parameterized uncertainties and multiple unknown state delays, aiming to drive that the displacements and velocities of trains can track the desired reference trajectories. To describe the operational dynamics of trains more realistically, the multi-particle model of trains involving multiple time-varying delays is established by analyzing the aerodynamic resistance, mechanical resistance, and coupler force acting on different cars. The proposed adaptive ILC scheme fully leverages various techniques, e.g., the hyperbolic tangent function, the parameter separation, to cope with the inherent nonlinearities, uncertainties and couplings of system. Specially, to eliminate the negative influence of unknown delays, an appropriate Krasovskii function is integrated into the Lyapunov criterion to devise the learning controller and check the stability of control systems. The novelties of our work lie in that the refinement model and periodical characteristic are simultaneously utilized to improve the practicability and performance of control scheme for the high-speed trains with multiple state delays.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
热心市民小红花应助monsoon采纳,获得10
3秒前
orixero应助汪汪队立大功采纳,获得10
3秒前
Masaccy完成签到,获得积分10
3秒前
华仔应助方式采纳,获得10
4秒前
iMoney发布了新的文献求助10
4秒前
5秒前
5秒前
55215完成签到,获得积分20
5秒前
兮尔发布了新的文献求助10
6秒前
LeonPrisig发布了新的文献求助10
6秒前
Hello应助随便打采纳,获得30
6秒前
7秒前
7秒前
55215发布了新的文献求助10
8秒前
9秒前
10秒前
充电宝应助liuyaofeng采纳,获得10
10秒前
小吕小吕发布了新的文献求助10
10秒前
YLX完成签到 ,获得积分10
11秒前
怡然的向南完成签到,获得积分10
11秒前
sjckn应助无疾而终采纳,获得30
11秒前
13秒前
Yuanyuan发布了新的文献求助10
13秒前
可乐加冰发布了新的文献求助10
13秒前
现在就去看文献完成签到,获得积分10
16秒前
16秒前
棉花糖完成签到,获得积分10
16秒前
17秒前
哈1823145发布了新的文献求助10
17秒前
17秒前
领导范儿应助在捂汗采纳,获得10
18秒前
江蹇完成签到,获得积分10
20秒前
20秒前
22秒前
LJR完成签到,获得积分10
24秒前
GJL完成签到,获得积分10
25秒前
hyx9504发布了新的文献求助10
26秒前
Ning完成签到,获得积分10
26秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952180
求助须知:如何正确求助?哪些是违规求助? 3497683
关于积分的说明 11088472
捐赠科研通 3228269
什么是DOI,文献DOI怎么找? 1784720
邀请新用户注册赠送积分活动 868875
科研通“疑难数据库(出版商)”最低求助积分说明 801281