Effective method for filling gaps in time series of environmental remote sensing data: An example on evapotranspiration and land surface temperature images

蒸散量 可并行流形 遥感 图像分辨率 缺少数据 系列(地层学) 环境科学 时间序列 时间分辨率 计算机科学 算法 数据挖掘 人工智能 地质学 机器学习 物理 生物 古生物学 量子力学 生态学
作者
Negar Siabi,Seyed Hossein Sanaei Nejad,B Ghahraman
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:193: 106619-106619 被引量:13
标识
DOI:10.1016/j.compag.2021.106619
摘要

Phenomena such as cloudiness, atmospheric aerosol or sensor failure cause missing data (gaps) in remote sensing images and damage spatial and temporal continuity. Dealing with this deficiency is of importance for continuous spatio-temporal modeling and environmental studies. Simplicity, efficiency and accuracy are dominant factors in practicality of gap filling algorithms especially in dealing with large gaps and long time series. In this study, an effective and efficient spatio-temporal gap filling algorithm is proposed, implemented and tested. The method was applied to MODIS 8-day Land Surface Temperature (LST) and Evapotranspiration (ET) datasets with a 1 km spatial resolution. To assess the performance of the proposed methods, artificial gaps were introduced and filled. Then estimated and real values were compared. The results showed that our method can predict the missing values very accurately (based on RMSE) even in gaps with heterogeneous surface for both variables. Our proposed method has no limitation on the shape and size of the gaps. The proposed algorithm is flexible regarding parameterization. It can handle large volumes of datasets due to its parallelizable structure. More importantly, the method run-time is extremely low even in large gaps.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
花花完成签到 ,获得积分10
1秒前
1秒前
老谢发布了新的文献求助10
2秒前
check003完成签到,获得积分10
2秒前
fortune完成签到,获得积分10
3秒前
彳亍完成签到,获得积分10
5秒前
6秒前
8秒前
Lin完成签到,获得积分10
9秒前
9秒前
斯文败类应助乐观鑫鹏采纳,获得10
11秒前
浮游应助LHP采纳,获得10
12秒前
Lulul发布了新的文献求助10
13秒前
bai完成签到,获得积分10
13秒前
十一玮发布了新的文献求助10
14秒前
xdmhv完成签到,获得积分10
18秒前
19秒前
Akim应助Tian采纳,获得10
21秒前
水水的完成签到 ,获得积分10
23秒前
球球尧伞耳完成签到,获得积分10
26秒前
John完成签到,获得积分10
27秒前
29秒前
酷波er应助纯真猕猴桃采纳,获得10
29秒前
30秒前
didi发布了新的文献求助10
30秒前
万能图书馆应助qianqina采纳,获得30
30秒前
暮烟应助Lulul采纳,获得10
30秒前
虚幻的冬瓜完成签到 ,获得积分10
33秒前
小翼发布了新的文献求助10
35秒前
37秒前
40秒前
glay发布了新的文献求助10
44秒前
想睡觉的小笼包完成签到 ,获得积分10
44秒前
称心映寒完成签到 ,获得积分10
46秒前
isak完成签到 ,获得积分10
46秒前
rachel03发布了新的文献求助20
49秒前
某某完成签到 ,获得积分10
49秒前
52秒前
55秒前
巩佳铭发布了新的文献求助10
56秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560419
求助须知:如何正确求助?哪些是违规求助? 4645588
关于积分的说明 14675693
捐赠科研通 4586757
什么是DOI,文献DOI怎么找? 2516534
邀请新用户注册赠送积分活动 1490145
关于科研通互助平台的介绍 1460969