Single-Atom Cobalt Incorporated in a 2D Graphene Oxide Membrane for Catalytic Pollutant Degradation

催化作用 过硫酸盐 石墨烯 化学工程 氧化物 纳米孔 氧化钴 材料科学 悬挂(拓扑) 降级(电信) 膜污染 结垢 化学 纳米技术 无机化学 有机化学 电信 数学 纯数学 生物化学 同伦 工程类 计算机科学
作者
Xuanhao Wu,Kali Rigby,Dahong Huang,Tayler Hedtke,Xiaoxiong Wang,Myoung Won Chung,Seunghyun Weon,Eli Stavitski,Jae‐Hong Kim
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:56 (2): 1341-1351 被引量:113
标识
DOI:10.1021/acs.est.1c06371
摘要

We introduce a new graphene oxide (GO)-based membrane architecture that hosts cobalt catalysts within its nanoscale pore walls. Such an architecture would not be possible with catalysts in nanoscale, the current benchmark, since they would block the pores or alter the pore structure. Therefore, we developed a new synthesis procedure to load cobalt in an atomically dispersed fashion, the theoretical limit in material downsizing. The use of vitamin C as a mild reducing agent was critical to load Co as dispersed atoms (Co1), preserving the well-stacked 2D structure of GO layers. With the addition of peroxymonosulfate (PMS), the Co1-GO membrane efficiently degraded 1,4-dioxane, a small, neutral pollutant that passes through nanopores in single-pass treatment. The observed 1,4-dioxane degradation kinetics were much faster (>640 times) than the kinetics in suspension and the highest among reported persulfate-based 1,4-dioxane destruction. The capability of the membrane to reject large organic molecules alleviated their effects on radical scavenging. Furthermore, the advanced oxidation also mitigated membrane fouling. The findings of this study present a critical advance toward developing catalytic membranes with which two distinctive and complementary processes, membrane filtration and advanced oxidation, can be combined into a single-step treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助义气的傲松采纳,获得10
刚刚
刚刚
哭泣蛋挞完成签到 ,获得积分10
1秒前
sweetbearm应助通~采纳,获得10
1秒前
田様应助吃饭用大碗采纳,获得10
2秒前
2秒前
3秒前
4秒前
阿斯蒂和琴酒完成签到 ,获得积分10
4秒前
珂珂发布了新的文献求助10
6秒前
6秒前
迟大猫应助我是站长才怪采纳,获得30
6秒前
7秒前
BaekHyun发布了新的文献求助10
7秒前
背后翠梅发布了新的文献求助30
7秒前
CCR发布了新的文献求助10
7秒前
su发布了新的文献求助10
9秒前
善学以致用应助钰c采纳,获得10
9秒前
Fundamental完成签到,获得积分20
10秒前
通~发布了新的文献求助10
10秒前
Akim应助阿屁屁猪采纳,获得10
10秒前
11秒前
细雨听风发布了新的文献求助10
11秒前
11秒前
英俊的小松鼠完成签到,获得积分10
11秒前
12秒前
14秒前
cc完成签到,获得积分20
14秒前
15秒前
15秒前
背后翠梅完成签到,获得积分10
15秒前
15秒前
涛涛发布了新的文献求助10
15秒前
lan完成签到,获得积分10
15秒前
皮皮完成签到 ,获得积分10
16秒前
ChiDaiOLD完成签到,获得积分10
16秒前
16秒前
情怀应助顺顺采纳,获得10
16秒前
Fundamental发布了新的文献求助10
18秒前
咩咩发布了新的文献求助10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808