The association between pulmonary function and depression in middle-aged and elderly people in China: The role of cognitive ability and sleep time

萧条(经济学) 混淆 认知 肺功能测试 心理学 逻辑回归 医学 临床心理学 纵向研究 精神科 内科学 宏观经济学 病理 经济
作者
Min Bao,Jianqian Chao,Ruixue Cai,Na Zhang,Hongling Chen,Mingxin Sheng
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:299: 377-382 被引量:3
标识
DOI:10.1016/j.jad.2021.12.017
摘要

Depression is a common mental disorder in middle-aged and elderly people, which seriously affects their physical health and life quality.So far, whether pulmonary function is a factor in depression has not been tested.The purpose of this study was to test whether pulmonary function was independently associated with depression and to assess the effects of cognitive ability and sleep time on this association.In this analysis, 5,235 participants from the Chinese Longitudinal Study of Health and Retirement were included. Participants were registered in 2015 and followed up in 2018. The relationship between pulmonary function and depression was estimated by binary logistic regression model. The mediated role of cognitive ability was examined by intermediary analysis, and the interaction between pulmonary function and sleep time on depression was discussed.After adjusting for confounding factors, it was found that higher baseline pulmonary function was the protective factor of depression (OR [95%CI]=0.524 [0.394-0.697] for the lowest quantile vs the highest quantile). Cognitive ability explained 14.55% of the association between pulmonary function and depression, pulmonary function and sleep time on the effects of depression have a combined interaction, RERI (95%CI) = 0.545 (0.053-1.038).High baseline pulmonary function is independently associated with a lower risk of depression, which is partly mediated by cognitive ability. Pulmonary function and sleep time have synergy with the effects of depression. These findings show that pulmonary function, cognitive ability and sleep time are reliable predictors of depression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lu完成签到,获得积分10
1秒前
Murphy完成签到 ,获得积分10
1秒前
斯文败类应助大方嵩采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
丘比特应助科研通管家采纳,获得30
2秒前
hh应助科研通管家采纳,获得10
2秒前
Ava应助科研通管家采纳,获得10
2秒前
情怀应助科研通管家采纳,获得10
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
ding应助科研通管家采纳,获得20
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
Hello应助科研通管家采纳,获得10
2秒前
sutharsons应助科研通管家采纳,获得200
3秒前
orixero应助科研通管家采纳,获得10
3秒前
许多知识发布了新的文献求助10
4秒前
FashionBoy应助su采纳,获得10
4秒前
4秒前
运敬完成签到 ,获得积分10
5秒前
XSB完成签到,获得积分10
5秒前
青草蛋糕完成签到 ,获得积分10
5秒前
怡然剑成完成签到,获得积分10
5秒前
5秒前
liyuchen发布了新的文献求助10
6秒前
ipeakkka完成签到,获得积分20
8秒前
马克发布了新的文献求助10
8秒前
赵OO完成签到,获得积分10
8秒前
Yon完成签到 ,获得积分10
9秒前
呆头完成签到,获得积分10
9秒前
科研通AI5应助skier采纳,获得10
10秒前
ywang发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
keyantong完成签到 ,获得积分10
16秒前
booshu完成签到,获得积分10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824