医学
药理学
激酶
酪氨酸激酶
索拉非尼
癌症研究
内科学
化学
受体
生物化学
肝细胞癌
标识
DOI:10.1016/j.phrs.2021.106037
摘要
Owing to the dysregulation of protein kinase activity in many diseases including cancer, this enzyme family has become one of the most important drug targets in the 21st century. There are 68 FDA-approved therapeutic agents that target about two dozen different protein kinases and six of these drugs were approved in 2021. Of the approved drugs, twelve target protein-serine/threonine protein kinases, four are directed against dual specificity protein kinases (MEK1/2), thirteen block nonreceptor protein-tyrosine kinases, and 39 target receptor protein-tyrosine kinases. The data indicate that 58 of these drugs are prescribed for the treatment of neoplasms (49 against solid tumors including breast, lung, and colon, five against nonsolid tumors such as leukemias, and four against both solid and nonsolid tumors: acalabrutinib, ibrutinib, imatinib, and midostaurin). Three drugs (baricitinib, tofacitinib, upadacitinib) are used for the treatment of inflammatory diseases including rheumatoid arthritis. Of the 68 approved drugs, eighteen are used in the treatment of multiple diseases. The following six drugs received FDA approval in 2021 for the treatment of these specified diseases: belumosudil (graft vs. host disease), infigratinib (cholangiocarcinomas), mobocertinib and tepotinib (specific forms of non-small cell lung cancer), tivozanib (renal cell carcinoma), and trilaciclib (to decrease chemotherapy-induced myelosuppression). All of the FDA-approved drugs are orally effective with the exception of netarsudil, temsirolimus, and the newly approved trilaciclib. This review summarizes the physicochemical properties of all 68 FDA-approved small molecule protein kinase inhibitors including lipophilic efficiency and ligand efficiency.
科研通智能强力驱动
Strongly Powered by AbleSci AI