HDP-CNN: Highway deep pyramid convolution neural network combining word-level and character-level representations for phishing website detection

计算机科学 卷积神经网络 文字嵌入 网络钓鱼 深度学习 嵌入 特征(语言学) 人工智能 棱锥(几何) 性格(数学) 词(群论) 特征学习 欺骗攻击 代表(政治) 特征工程 支持向量机 互联网 万维网 计算机安全 语言学 哲学 物理 几何学 数学 政治 法学 政治学 光学
作者
Faan Zheng,Qiao Yan,Victor C. M. Leung,F. Richard Yu,Zhong Ming
出处
期刊:Computers & Security [Elsevier]
卷期号:114: 102584-102584 被引量:18
标识
DOI:10.1016/j.cose.2021.102584
摘要

Phishing has become a prevailing method for attackers to steal users' private data and commit fraud, posing a serious threat to Internet users. How to detect phishing websites has attracted great interests from both academia and industry. A popular approach is to use support vector machine (SVM) to detect phishing websites. However, this approach relies on extracting features designated by experts, and the prediction effectiveness of the model is greatly affected by the quality of feature extraction. In addition, it cannot handle features that are not identifiable. Deep learning methods therefore become popular as they do not require manual feature engineering. However, many deep learning methods can only learn feature information of uniform resource locators (URLs) at the character level, while ignoring the intrinsic connections of words. To address these limitations, we propose a novel highway deep pyramid convolution neural network (HDP-CNN), a deep convolutional network that combines character-level and word-level representation information. HDP-CNN first receives the URL string sequences as input, then performs character-level embedding and word-level embedding respectively. Afterward, it uses the Highway network to connect the character-level embedding representation and word-level embedding representation of the URL and extracts local features of different sizes from the region embedding layer. Finally, it passes them into the designed deep pyramid structure network to capture the global representation of the URL. Our experiments illustrate that the information expressed by embedding vectors of different granularities has subtle differences. By combining embedding feature information of different granularities, HDP-CNN exhibits better performance than methods based on single embedding feature information. In our experiments, we construct an imbalanced dataset that has the ratio of benign websites to phishing websites is close to 5:1. The experimental results demonstrate that our method outperforms other methods, with accuracy at 98.30%, true positive rate (TPR) at 99.18%, and true negative rate (TNR) at 94.34%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
10秒前
Driscoll完成签到 ,获得积分10
11秒前
小白白白完成签到 ,获得积分10
13秒前
abcdefg完成签到,获得积分10
19秒前
CCD完成签到 ,获得积分10
22秒前
yujie完成签到 ,获得积分10
24秒前
李新光完成签到 ,获得积分10
27秒前
奋斗奋斗再奋斗完成签到,获得积分10
31秒前
彭于晏应助科研通管家采纳,获得10
40秒前
LiChard完成签到 ,获得积分10
42秒前
BaekHyun完成签到 ,获得积分10
43秒前
菠萝包完成签到 ,获得积分10
53秒前
是我呀小夏完成签到 ,获得积分10
1分钟前
科研佟完成签到 ,获得积分10
1分钟前
大佬应助云下采纳,获得10
1分钟前
凶狠的盛男完成签到 ,获得积分10
1分钟前
浅浅殇完成签到,获得积分10
1分钟前
懵懂的钢笔完成签到,获得积分10
1分钟前
小聖完成签到 ,获得积分10
1分钟前
Bgeelyu完成签到,获得积分10
1分钟前
卓矢完成签到 ,获得积分10
1分钟前
Bgeelyu发布了新的文献求助200
1分钟前
i2stay完成签到,获得积分10
1分钟前
ranj完成签到,获得积分10
1分钟前
hdx完成签到 ,获得积分10
1分钟前
jiaozitop完成签到,获得积分10
1分钟前
星光完成签到 ,获得积分10
1分钟前
666完成签到 ,获得积分10
1分钟前
包容的忆灵完成签到 ,获得积分10
1分钟前
May完成签到 ,获得积分10
2分钟前
温暖的碧蓉完成签到 ,获得积分10
2分钟前
尼可刹米洛贝林完成签到,获得积分10
2分钟前
EiketsuChiy完成签到 ,获得积分0
2分钟前
追寻的冬寒完成签到 ,获得积分10
2分钟前
张时婕完成签到 ,获得积分10
2分钟前
daisy完成签到 ,获得积分10
2分钟前
2分钟前
忆茶戏完成签到 ,获得积分10
2分钟前
Orange应助xgx984采纳,获得10
2分钟前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Sociocultural theory and the teaching of second languages 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3339051
求助须知:如何正确求助?哪些是违规求助? 2967054
关于积分的说明 8627982
捐赠科研通 2646523
什么是DOI,文献DOI怎么找? 1449277
科研通“疑难数据库(出版商)”最低求助积分说明 671343
邀请新用户注册赠送积分活动 660176