HDP-CNN: Highway deep pyramid convolution neural network combining word-level and character-level representations for phishing website detection

计算机科学 卷积神经网络 文字嵌入 网络钓鱼 深度学习 嵌入 特征(语言学) 人工智能 棱锥(几何) 性格(数学) 词(群论) 特征学习 欺骗攻击 代表(政治) 特征工程 支持向量机 互联网 万维网 计算机安全 物理 哲学 光学 政治 法学 语言学 数学 政治学 几何学
作者
Faan Zheng,Qiao Yan,Victor C. M. Leung,F. Richard Yu,Zhong Ming
出处
期刊:Computers & Security [Elsevier BV]
卷期号:114: 102584-102584 被引量:18
标识
DOI:10.1016/j.cose.2021.102584
摘要

Phishing has become a prevailing method for attackers to steal users' private data and commit fraud, posing a serious threat to Internet users. How to detect phishing websites has attracted great interests from both academia and industry. A popular approach is to use support vector machine (SVM) to detect phishing websites. However, this approach relies on extracting features designated by experts, and the prediction effectiveness of the model is greatly affected by the quality of feature extraction. In addition, it cannot handle features that are not identifiable. Deep learning methods therefore become popular as they do not require manual feature engineering. However, many deep learning methods can only learn feature information of uniform resource locators (URLs) at the character level, while ignoring the intrinsic connections of words. To address these limitations, we propose a novel highway deep pyramid convolution neural network (HDP-CNN), a deep convolutional network that combines character-level and word-level representation information. HDP-CNN first receives the URL string sequences as input, then performs character-level embedding and word-level embedding respectively. Afterward, it uses the Highway network to connect the character-level embedding representation and word-level embedding representation of the URL and extracts local features of different sizes from the region embedding layer. Finally, it passes them into the designed deep pyramid structure network to capture the global representation of the URL. Our experiments illustrate that the information expressed by embedding vectors of different granularities has subtle differences. By combining embedding feature information of different granularities, HDP-CNN exhibits better performance than methods based on single embedding feature information. In our experiments, we construct an imbalanced dataset that has the ratio of benign websites to phishing websites is close to 5:1. The experimental results demonstrate that our method outperforms other methods, with accuracy at 98.30%, true positive rate (TPR) at 99.18%, and true negative rate (TNR) at 94.34%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助豆豆采纳,获得10
刚刚
我是老大应助kk采纳,获得10
刚刚
独孤九原发布了新的文献求助10
刚刚
白纸发布了新的文献求助10
刚刚
哇咔咔发布了新的文献求助10
刚刚
1秒前
乐乐应助wyz采纳,获得10
2秒前
楠楠完成签到 ,获得积分10
2秒前
yhhy关注了科研通微信公众号
3秒前
bulinggu发布了新的文献求助10
3秒前
5秒前
7秒前
天天快乐应助吃吃采纳,获得30
7秒前
8秒前
8秒前
8秒前
青衫发布了新的文献求助10
9秒前
纯真冰蝶发布了新的文献求助10
10秒前
11秒前
俗丨完成签到,获得积分10
11秒前
打打应助Culto采纳,获得10
11秒前
12秒前
12秒前
12秒前
威威完成签到,获得积分10
13秒前
zhangyu应助豆豆采纳,获得10
13秒前
cherlie应助jjjjj采纳,获得10
14秒前
15秒前
dz发布了新的文献求助10
15秒前
16秒前
zhx发布了新的文献求助30
16秒前
wyz发布了新的文献求助10
16秒前
annzl发布了新的文献求助10
17秒前
wanci应助纯真冰蝶采纳,获得10
17秒前
桐桐应助zhang采纳,获得10
18秒前
优美电脑发布了新的文献求助80
19秒前
20秒前
在水一方应助青衫采纳,获得10
20秒前
浅蓝默完成签到,获得积分10
20秒前
kk发布了新的文献求助10
21秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992840
求助须知:如何正确求助?哪些是违规求助? 3533621
关于积分的说明 11263330
捐赠科研通 3273416
什么是DOI,文献DOI怎么找? 1806029
邀请新用户注册赠送积分活动 882889
科研通“疑难数据库(出版商)”最低求助积分说明 809619