Role of Electronic States and Their Coupling on Radiative Losses of Open-Circuit Voltage in Organic Photovoltaics

有机太阳能电池 辐射传输 光伏系统 光伏 材料科学 分子内力 开路电压 分子间力 接受者 化学物理 极限(数学) 电压 光电子学
作者
Nakul Jain,Ramakant Sharma,Suhas Mahesh,Dhanashree Moghe,Henry J. Snaith,Seunghyup Yoo,Dinesh Kabra
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:13 (50): 60279-60287
标识
DOI:10.1021/acsami.1c18776
摘要

Voltage losses (ΔVOC) are a crucial limitation for the performance of excitonic organic solar cells (OSCs) and can be estimated by two approaches─the radiative limit and the Marcus charge-transfer (MCT) model. In this work, we show that combining the radiative limit and MCT models for voltage loss calculations provides useful insights into the physics of emerging efficient OSCs. We studied nine different donor-acceptor systems, wherein the power conversion efficiency ranges from 4.4 to 14.1% and ΔVOC varies from 0.55 to 0.95 V. For these state-of-the-art devices, we calculated the ΔVOC using the radiative limit and the MCT model. Furthermore, we combined both models to derive new insights on the origin of radiative voltage losses (ΔVrad) in OSCs. We quantified the contribution in ΔVrad due to the bulk intramolecular (S1) disorder and interfacial intermolecular (CT) disorder by revisiting the spectral regions of interest for OSCs. Our findings are in agreement with the expected relationship of VOC with Urbach energy (EU), which suggests that the low EU is beneficial for reduced losses. However, unprecedentedly, we also identify a universal, almost linear relationship between the interfacial disorder (λ) and ΔVrad. We believe that these results can be exploited by the organic photovoltaic (OPV) community for the design of new molecules and a combination of donor-acceptors to further improve OSCs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
SciGPT应助tangli采纳,获得10
1秒前
Buduan发布了新的文献求助10
1秒前
1秒前
头哥应助rj采纳,获得10
1秒前
颜靖仇完成签到,获得积分10
1秒前
边宇发布了新的文献求助10
2秒前
内向问旋发布了新的文献求助10
3秒前
3秒前
3秒前
Hanoi347应助陶醉的绮山采纳,获得10
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
dada完成签到,获得积分10
4秒前
hhh发布了新的文献求助10
5秒前
5秒前
愉快的莹发布了新的文献求助10
5秒前
5秒前
孙泉发布了新的文献求助10
5秒前
金乌完成签到 ,获得积分10
6秒前
彭于晏应助吉不得采纳,获得10
6秒前
孤傲的静脉完成签到,获得积分10
6秒前
6秒前
远方完成签到 ,获得积分10
6秒前
华仔应助王艺霖采纳,获得10
6秒前
6秒前
昭昭如愿完成签到,获得积分20
6秒前
7秒前
luluzheng应助PDIF-CN2采纳,获得10
7秒前
火柴two发布了新的文献求助10
7秒前
8秒前
初夏的百褶裙完成签到,获得积分10
8秒前
cruel发布了新的文献求助10
8秒前
8秒前
ppat5012发布了新的文献求助10
8秒前
pengliao完成签到,获得积分10
8秒前
魏士博发布了新的文献求助10
8秒前
田所浩二完成签到 ,获得积分10
9秒前
10秒前
华仔应助zhdan采纳,获得10
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699679
求助须知:如何正确求助?哪些是违规求助? 5132628
关于积分的说明 15227678
捐赠科研通 4854695
什么是DOI,文献DOI怎么找? 2604865
邀请新用户注册赠送积分活动 1556246
关于科研通互助平台的介绍 1514444