Analyzing Neural Time Series Data

系列(地层学) 时间序列 计算机科学 人工神经网络 人工智能 机器学习 地质学 古生物学
作者
Mike X Cohen
出处
期刊:The MIT Press eBooks [The MIT Press]
被引量:1944
标识
DOI:10.7551/mitpress/9609.001.0001
摘要

A comprehensive guide to the conceptual, mathematical, and implementational aspects of analyzing electrical brain signals, including data from MEG, EEG, and LFP recordings. This book offers a comprehensive guide to the theory and practice of analyzing electrical brain signals. It explains the conceptual, mathematical, and implementational (via Matlab programming) aspects of time-, time-frequency- and synchronization-based analyses of magnetoencephalography (MEG), electroencephalography (EEG), and local field potential (LFP) recordings from humans and nonhuman animals. It is the only book on the topic that covers both the theoretical background and the implementation in language that can be understood by readers without extensive formal training in mathematics, including cognitive scientists, neuroscientists, and psychologists. Readers who go through the book chapter by chapter and implement the examples in Matlab will develop an understanding of why and how analyses are performed, how to interpret results, what the methodological issues are, and how to perform single-subject-level and group-level analyses. Researchers who are familiar with using automated programs to perform advanced analyses will learn what happens when they click the “analyze now” button. The book provides sample data and downloadable Matlab code. Each of the 38 chapters covers one analysis topic, and these topics progress from simple to advanced. Most chapters conclude with exercises that further develop the material covered in the chapter. Many of the methods presented (including convolution, the Fourier transform, and Euler's formula) are fundamental and form the groundwork for other advanced data analysis methods. Readers who master the methods in the book will be well prepared to learn other approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助高挑的梦芝采纳,获得10
1秒前
1秒前
科研通AI6应助小颖采纳,获得10
2秒前
小王发布了新的文献求助10
3秒前
3秒前
zzn发布了新的文献求助10
4秒前
7r完成签到,获得积分10
4秒前
张德帅发布了新的文献求助10
5秒前
天天快乐应助Serendipity采纳,获得10
6秒前
6秒前
TT完成签到,获得积分20
6秒前
PROPELLER发布了新的文献求助10
7秒前
一副药发布了新的文献求助10
7秒前
大个应助飘逸百褶裙采纳,获得10
7秒前
hust610wh发布了新的文献求助10
9秒前
今后应助灵活又幸福的胖采纳,获得10
10秒前
星空下的皮先生完成签到,获得积分10
10秒前
10秒前
满意的西牛完成签到,获得积分10
11秒前
无辜凝安完成签到,获得积分10
11秒前
ken131完成签到 ,获得积分0
12秒前
12秒前
活力怜雪完成签到 ,获得积分10
13秒前
BG完成签到,获得积分10
13秒前
Darren完成签到,获得积分10
13秒前
endlessloop发布了新的文献求助10
13秒前
15秒前
zzn完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
15秒前
西塘古镇的独角兽完成签到,获得积分10
16秒前
17秒前
17秒前
无辜凝安发布了新的文献求助10
17秒前
18秒前
随便起个名完成签到,获得积分10
18秒前
gyyy完成签到 ,获得积分10
19秒前
嗯嗯完成签到 ,获得积分10
19秒前
20秒前
mzt发布了新的文献求助10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
上海破产法庭破产实务案例精选(2019-2024) 500
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5475655
求助须知:如何正确求助?哪些是违规求助? 4577327
关于积分的说明 14361496
捐赠科研通 4505243
什么是DOI,文献DOI怎么找? 2468525
邀请新用户注册赠送积分活动 1456156
关于科研通互助平台的介绍 1429890