Analyzing Neural Time Series Data

系列(地层学) 时间序列 计算机科学 人工神经网络 人工智能 机器学习 地质学 古生物学
作者
Mike X Cohen
出处
期刊:The MIT Press eBooks [The MIT Press]
被引量:1758
标识
DOI:10.7551/mitpress/9609.001.0001
摘要

A comprehensive guide to the conceptual, mathematical, and implementational aspects of analyzing electrical brain signals, including data from MEG, EEG, and LFP recordings. This book offers a comprehensive guide to the theory and practice of analyzing electrical brain signals. It explains the conceptual, mathematical, and implementational (via Matlab programming) aspects of time-, time-frequency- and synchronization-based analyses of magnetoencephalography (MEG), electroencephalography (EEG), and local field potential (LFP) recordings from humans and nonhuman animals. It is the only book on the topic that covers both the theoretical background and the implementation in language that can be understood by readers without extensive formal training in mathematics, including cognitive scientists, neuroscientists, and psychologists. Readers who go through the book chapter by chapter and implement the examples in Matlab will develop an understanding of why and how analyses are performed, how to interpret results, what the methodological issues are, and how to perform single-subject-level and group-level analyses. Researchers who are familiar with using automated programs to perform advanced analyses will learn what happens when they click the “analyze now” button. The book provides sample data and downloadable Matlab code. Each of the 38 chapters covers one analysis topic, and these topics progress from simple to advanced. Most chapters conclude with exercises that further develop the material covered in the chapter. Many of the methods presented (including convolution, the Fourier transform, and Euler's formula) are fundamental and form the groundwork for other advanced data analysis methods. Readers who master the methods in the book will be well prepared to learn other approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fancy发布了新的文献求助10
刚刚
刚刚
Akim应助我又可以了采纳,获得10
1秒前
you发布了新的文献求助10
1秒前
淡定从凝完成签到,获得积分10
1秒前
於成协完成签到,获得积分10
3秒前
笑容发布了新的文献求助10
3秒前
3秒前
落寞灵安发布了新的文献求助30
3秒前
跳跃梦蕊发布了新的文献求助20
3秒前
sunflower完成签到,获得积分0
4秒前
LZ完成签到 ,获得积分10
4秒前
Lucas应助大大怪采纳,获得10
4秒前
PKX完成签到 ,获得积分10
5秒前
搜集达人应助张三采纳,获得10
5秒前
5秒前
酷波er应助万万不可能采纳,获得10
5秒前
LXL关闭了LXL文献求助
5秒前
眇鱼完成签到 ,获得积分10
6秒前
搜集达人应助MIDANN采纳,获得10
6秒前
CC完成签到,获得积分10
6秒前
6秒前
7秒前
8秒前
小杜完成签到,获得积分10
8秒前
直率的宛海完成签到,获得积分10
8秒前
kingwhitewing发布了新的文献求助10
8秒前
活泼身影发布了新的文献求助10
9秒前
香蕉觅云应助erhan7采纳,获得10
10秒前
用户5063899完成签到,获得积分10
10秒前
11秒前
飘逸鸵鸟发布了新的文献求助10
11秒前
fsky发布了新的文献求助10
11秒前
火星上黎云完成签到,获得积分10
11秒前
12秒前
12秒前
Spinnin完成签到,获得积分10
13秒前
华仔应助zdnn采纳,获得30
13秒前
bkagyin应助跳跃仙人掌采纳,获得10
14秒前
LL完成签到 ,获得积分10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986618
求助须知:如何正确求助?哪些是违规求助? 3529071
关于积分的说明 11243225
捐赠科研通 3267556
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881185
科研通“疑难数据库(出版商)”最低求助积分说明 808582