中性粒细胞胞外陷阱
硒蛋白
GPX1型
伏马菌素B1
活性氧
分子生物学
谷胱甘肽过氧化物酶
生物
先天免疫系统
髓过氧化物酶
细胞外
中性粒细胞弹性蛋白酶
过氧化物还原蛋白
硫氧还蛋白还原酶
生物化学
溶菌酶
化学
过氧化物酶
超氧化物歧化酶
硫氧还蛋白
氧化应激
炎症
免疫学
酶
受体
真菌毒素
植物
作者
Huquan Zhu,Qinfang Yu,Huimin Ouyang,Ruofan Zhang,Jinhong Li,Runxi Xian,Kai Wang,Xinran Li,Changyu Cao
标识
DOI:10.1021/acs.jafc.2c01329
摘要
Neutrophils are an important component of the innate immune system, and one of their defense mechanisms, neutrophil extracellular traps (NETs), is a hot topic of the current research. This study explored the effects of fumonisin B1 (FB1) on chicken neutrophil production of NETs and its possible molecular mechanism of action. Scanning electron microscopy and fluorescence microscopy were used to observe morphological changes in neutrophils, and a fluorescence microplate reader was used to detect reactive oxygen species (ROS) and extracellular DNA release from neutrophils. Quantitative PCR (qPCR) and western blot were used to determine the expression levels of selenoproteins. The results indicate that FB1 inhibited the zymosan-induced formation of NETs in chicken neutrophils by preventing ROS burst and histone H3 (H3) and neutrophil elastase (NE) release. Moreover, the mRNA expression levels of glutathione peroxidase (GPX), thioredoxin reductase (TXNRD), and deiodinase (DIO) were downregulated in the FB1 group. The protein expression levels of GPX1, GPX2, GPX3, DIO3, and TXNRD1 were consistent with the changes in their gene expressions, suggesting an abnormal selenoprotein expression in response to the toxic effects of FB1. Conversely, selenium (Se) supplementation reduced the toxic effects of FB1 and restored the NETs formation, indicating that Se can be used as a potential drug to prevent and control FB1 toxicity in livestock farming.
科研通智能强力驱动
Strongly Powered by AbleSci AI