亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Robust fast dictionary learning for seismic noise attenuation

计算机科学 噪音(视频) K-SVD公司 降噪 奇异值分解 高斯噪声 算法 高斯分布 过程(计算) 人工智能 模式识别(心理学) 稀疏逼近 物理 量子力学 操作系统 图像(数学)
作者
Zhenjie Feng
出处
期刊:Geophysical Prospecting [Wiley]
卷期号:70 (7): 1143-1162 被引量:1
标识
DOI:10.1111/1365-2478.13217
摘要

ABSTRACT Dictionary learning has been intensively applied to process multi‐channel seismic data due to its adaptively learned basis atoms that are data driven. Traditionally, dictionary learning is mostly used to attenuate random noise in the literature since the dictionary update operation is not sensitive to Gaussian noise. However, when dictionary learning is applied to seismic data containing strong erratic noise, which does not follow the Gaussian distribution, its performance greatly deteriorates. In this paper, we propose a novel robust dictionary learning method for dealing with both random and erratic noise. We formulate the dictionary‐learning‐sbased denoising problem as an iterative process. During each iteration, we gradually diminish the effect of the erratic noise and make the denoising problem more Gaussian type. Considering the computational overburden of the classic K‐singular value decomposition algorithm due to many iterations, we substitute the K‐singular value decomposition algorithm with an efficient algorithm, which does not require the singular value decomposition operation. We apply the proposed method to several synthetic and field datasets and obtain good performance, which demonstrates its potential for wide application.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高高元柏完成签到,获得积分20
30秒前
33秒前
哈哈发布了新的文献求助10
35秒前
125mmD91T完成签到,获得积分10
45秒前
负者歌于途完成签到,获得积分10
1分钟前
哈哈我完成签到,获得积分10
1分钟前
1分钟前
wearelulu完成签到,获得积分10
1分钟前
Micheal完成签到 ,获得积分10
1分钟前
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
momo发布了新的文献求助30
2分钟前
2分钟前
何何发布了新的文献求助10
2分钟前
可爱的函函应助何何采纳,获得10
2分钟前
momo完成签到,获得积分10
2分钟前
Lan完成签到 ,获得积分10
3分钟前
Wei发布了新的文献求助10
3分钟前
3分钟前
哈哈发布了新的文献求助10
4分钟前
jinsijia应助科研通管家采纳,获得10
4分钟前
哈哈发布了新的文献求助10
4分钟前
计划完成签到,获得积分10
4分钟前
魔幻诗兰完成签到,获得积分10
4分钟前
NexusExplorer应助科研小贩采纳,获得10
4分钟前
4分钟前
科研小贩发布了新的文献求助10
4分钟前
热情依白应助可爱寻芹采纳,获得10
5分钟前
从来都不会放弃zr完成签到,获得积分0
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
王吉萍完成签到 ,获得积分10
5分钟前
gcr完成签到 ,获得积分10
6分钟前
Lucas应助科研通管家采纳,获得10
6分钟前
Emilia发布了新的文献求助10
6分钟前
6分钟前
量子星尘发布了新的文献求助10
6分钟前
7分钟前
千里草完成签到,获得积分10
7分钟前
lezbj99完成签到,获得积分10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5681609
求助须知:如何正确求助?哪些是违规求助? 5011314
关于积分的说明 15175896
捐赠科研通 4841184
什么是DOI,文献DOI怎么找? 2594973
邀请新用户注册赠送积分活动 1547960
关于科研通互助平台的介绍 1505990