亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Estimating the maize above-ground biomass by constructing the tridimensional concept model based on UAV-based digital and multi-spectral images

叶面积指数 天蓬 归一化差异植被指数 数学 决定系数 遥感 环境科学 农学 土壤科学 统计 植物 地理 生物
作者
Meiyan Shu,Mengyuan Shen,Dong Qizhou,Yang XiaoHong,Baoguo Li,Yuntao Ma
出处
期刊:Field Crops Research [Elsevier]
卷期号:282: 108491-108491 被引量:47
标识
DOI:10.1016/j.fcr.2022.108491
摘要

Above-ground biomass (AGB) is an important basis for the formation of crop yield. The accurate estimation of maize AGB based on unmanned aerial vehicle (UAV) images is important for superior varieties selection, field management and maize yield prediction. The previous studies mainly focused on constructing empirical models of AGB by using spectral vegetation indices (VIs), plant height (PH), texture, and is lacked of universality. We conducted the field experiments of maize breeding materials for three years, and obtained UAV digital and multi-spectral images. Considering that the maize AGB before tasseling stage was composed of stem and leaf, we constructed a tridimensional concept model to predict maize AGB coordinated by integrating leaf area index (LAI) and PH, in order to improve the accuracy and universality of UAV data on monitoring maize AGB at multiple growth stages. Firstly, the maize PH was estimated based on the maize canopy height model constructed using the UAV digital images. Secondly, the maize LAI was estimated based on UAV multi-spectrum images and the modified Beer-Lambert law. Finally, the tridimensional concept model of maize AGB was constructed by integrating PH and LAI, and compared with the AGB regression model based on the normalized difference vegetation index (NDVI). The results showed that the maize PH could be estimated well, and the R², RMSE and rRMSE of the measured and estimated PH were 0.87, 11.17 cm and 16.04% respectively. The LAI could be estimated effectively, and the R², RMSE, and rRMSE of the sample set were 0.78, 0.49 and 30% respectively. Compared with the maize AGB estimation model based on NDVI (R² = 0.79, RMSE = 41.95 g/m², rRMSE = 31.79%), the tridimensional concept model could better estimate the maize AGB (R² = 0.82, RMSE = 38.53 g/m², rRMSE = 29.19%). Testing the tridimensional concept model by stand-alone data of 2019 and 2021 years, the accuracy of the AGB estimation model based on the tridimensional concept was much higher than that of the NDVI model. In conclusion,the tridimensional concept model of maize AGB proposed in this study effectively improved the accuracy, stability and universality, which could provide a reference for the estimation of maize AGB by UAV technology at plot scale of the breeding materials.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
以won发布了新的文献求助10
4秒前
Orange应助摆烂ing采纳,获得10
4秒前
12秒前
16秒前
摆烂ing完成签到,获得积分10
17秒前
Yantuobio完成签到,获得积分10
43秒前
畅快甜瓜发布了新的文献求助10
45秒前
满意的伊完成签到,获得积分10
45秒前
年鱼精完成签到 ,获得积分10
47秒前
华仔应助读书的时候采纳,获得10
49秒前
53秒前
懵懂的莛完成签到,获得积分10
54秒前
yydd发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Lucas应助huahuahahajiu采纳,获得10
1分钟前
英勇滑板发布了新的文献求助10
1分钟前
1分钟前
香蕉觅云应助自然狗采纳,获得10
1分钟前
yydd完成签到,获得积分20
1分钟前
1分钟前
痞老板死磕蟹黄堡完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
英姑应助科研通管家采纳,获得10
2分钟前
竹修完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
赵芳完成签到,获得积分10
2分钟前
2分钟前
2分钟前
ZXneuro完成签到,获得积分10
2分钟前
yx发布了新的文献求助10
2分钟前
SciGPT应助信陵君无忌采纳,获得10
2分钟前
2分钟前
yx完成签到,获得积分10
2分钟前
机智元珊完成签到,获得积分10
3分钟前
ding应助畅快甜瓜采纳,获得10
3分钟前
狐尾完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5731901
求助须知:如何正确求助?哪些是违规求助? 5333980
关于积分的说明 15321767
捐赠科研通 4877719
什么是DOI,文献DOI怎么找? 2620550
邀请新用户注册赠送积分活动 1569861
关于科研通互助平台的介绍 1526352