Estimating the maize above-ground biomass by constructing the tridimensional concept model based on UAV-based digital and multi-spectral images

叶面积指数 天蓬 归一化差异植被指数 数学 决定系数 遥感 环境科学 农学 土壤科学 统计 植物 地理 生物
作者
Meiyan Shu,Mengyuan Shen,Dong Qizhou,Yang XiaoHong,Baoguo Li,Yuntao Ma
出处
期刊:Field Crops Research [Elsevier]
卷期号:282: 108491-108491 被引量:47
标识
DOI:10.1016/j.fcr.2022.108491
摘要

Above-ground biomass (AGB) is an important basis for the formation of crop yield. The accurate estimation of maize AGB based on unmanned aerial vehicle (UAV) images is important for superior varieties selection, field management and maize yield prediction. The previous studies mainly focused on constructing empirical models of AGB by using spectral vegetation indices (VIs), plant height (PH), texture, and is lacked of universality. We conducted the field experiments of maize breeding materials for three years, and obtained UAV digital and multi-spectral images. Considering that the maize AGB before tasseling stage was composed of stem and leaf, we constructed a tridimensional concept model to predict maize AGB coordinated by integrating leaf area index (LAI) and PH, in order to improve the accuracy and universality of UAV data on monitoring maize AGB at multiple growth stages. Firstly, the maize PH was estimated based on the maize canopy height model constructed using the UAV digital images. Secondly, the maize LAI was estimated based on UAV multi-spectrum images and the modified Beer-Lambert law. Finally, the tridimensional concept model of maize AGB was constructed by integrating PH and LAI, and compared with the AGB regression model based on the normalized difference vegetation index (NDVI). The results showed that the maize PH could be estimated well, and the R², RMSE and rRMSE of the measured and estimated PH were 0.87, 11.17 cm and 16.04% respectively. The LAI could be estimated effectively, and the R², RMSE, and rRMSE of the sample set were 0.78, 0.49 and 30% respectively. Compared with the maize AGB estimation model based on NDVI (R² = 0.79, RMSE = 41.95 g/m², rRMSE = 31.79%), the tridimensional concept model could better estimate the maize AGB (R² = 0.82, RMSE = 38.53 g/m², rRMSE = 29.19%). Testing the tridimensional concept model by stand-alone data of 2019 and 2021 years, the accuracy of the AGB estimation model based on the tridimensional concept was much higher than that of the NDVI model. In conclusion,the tridimensional concept model of maize AGB proposed in this study effectively improved the accuracy, stability and universality, which could provide a reference for the estimation of maize AGB by UAV technology at plot scale of the breeding materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
玛卡巴卡关注了科研通微信公众号
刚刚
hu970发布了新的文献求助30
刚刚
1秒前
腼腆的安雁完成签到 ,获得积分20
1秒前
中大王发布了新的文献求助10
1秒前
欢呼鼠标完成签到,获得积分20
2秒前
kk完成签到 ,获得积分10
2秒前
jxcandice完成签到,获得积分10
2秒前
悟空完成签到,获得积分10
2秒前
YY完成签到,获得积分10
3秒前
让大佐眯会吧完成签到,获得积分20
3秒前
Akim应助菊菊采纳,获得10
3秒前
3秒前
刘星星发布了新的文献求助10
3秒前
Vii完成签到,获得积分10
4秒前
4秒前
4秒前
星辰大海应助yatou5651采纳,获得10
5秒前
夜空中最亮的星完成签到,获得积分10
5秒前
咯咯咯发布了新的文献求助20
6秒前
a1oft发布了新的文献求助10
6秒前
地狱跳跳虎完成签到,获得积分10
7秒前
7秒前
7秒前
朱一龙发布了新的文献求助30
8秒前
中大王完成签到,获得积分10
8秒前
8秒前
啦啦啦完成签到 ,获得积分10
8秒前
艺阳完成签到,获得积分10
9秒前
9秒前
俏皮大地完成签到 ,获得积分10
9秒前
LLL发布了新的文献求助10
9秒前
共享精神应助卡卡采纳,获得10
10秒前
10秒前
10秒前
10秒前
大菠萝发布了新的文献求助10
10秒前
HEIKU应助帅酷的小刺猬采纳,获得10
11秒前
深情的嘉熙完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762