Federated against the cold: A trust-based federated learning approach to counter the cold start problem in recommendation systems

冷启动(汽车) 计算机科学 联合学习 冷战 万维网 人工智能 政治学 法学 工程类 航空航天工程 政治
作者
Omar Abdel Wahab,Gaith Rjoub,Jamal Bentahar,Robin Cohen
出处
期刊:Information Sciences [Elsevier]
卷期号:601: 189-206 被引量:32
标识
DOI:10.1016/j.ins.2022.04.027
摘要

• Federated learning-based recommendation system for cold-start items. • Trust establishment for recommenders that considers resource utilization and credibility. • Recommender selection strategy based on Double Deep Q Learning . • Simulations on the MovieLens 1M dataset suggest better accuracy compared to two benchmark approaches. Recommendation systems are often challenged by the existence of cold-start items for which no previous rating is available. The standard content-based or collaborative-filtering recommendation approaches may address this problem by asking users to share their data with a central (cloud-based) server, which uses machine learning to predict appropriate ratings on such items. But users may be reluctant to have their (confidential) data shared. Federated learning has been lately capitalized on to address the privacy concerns by enabling an on-device distributed training of a single machine learning model. In this work, we propose a federated learning-based approach to address the item cold-start problem in recommendation systems. The originality of our solution compared to existing federated learning-based solutions comes from (1) applying federated learning specifically to the cold-start problem; (2) proposing a trust mechanism to derive trust scores for the potential recommenders, followed by a double deep Q learning scheduling approach that relies on the trust and energy levels of the recommenders to select the best candidates. Simulations on the MovieLens 1M and Epinions datasets suggest that our solution improves the accuracy of recommending cold-start items and reduces the RMSE, MAE and running time compared to five benchmark approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
loey完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
东十八完成签到 ,获得积分10
2秒前
5秒前
独特靖巧发布了新的文献求助10
5秒前
aaswsdw发布了新的文献求助10
6秒前
白犀牛完成签到,获得积分10
7秒前
自由梦岚发布了新的文献求助10
9秒前
Rashalin完成签到,获得积分10
10秒前
11秒前
狂野世立发布了新的文献求助10
15秒前
xmyang发布了新的文献求助50
15秒前
努力生活的小柴完成签到,获得积分10
17秒前
哈哈哈完成签到,获得积分10
18秒前
18秒前
科目三应助草履虫采纳,获得10
19秒前
wshwx完成签到 ,获得积分10
22秒前
MADAO完成签到,获得积分10
22秒前
M张发布了新的文献求助10
23秒前
汤姆完成签到,获得积分10
23秒前
优雅的行云完成签到,获得积分10
25秒前
HPLC完成签到 ,获得积分10
25秒前
犹豫依丝应助wankai采纳,获得10
26秒前
专注翠安完成签到,获得积分20
26秒前
深情安青应助zj采纳,获得10
27秒前
852应助Son4904采纳,获得10
28秒前
28秒前
汉堡包应助小鱼儿采纳,获得10
30秒前
Renhong应助专注翠安采纳,获得10
30秒前
冷傲静竹完成签到,获得积分10
30秒前
甜的瓜完成签到,获得积分10
30秒前
Boris完成签到 ,获得积分10
32秒前
阿Q完成签到,获得积分10
32秒前
叉叉茶完成签到 ,获得积分10
32秒前
32秒前
石董宝宝完成签到,获得积分10
33秒前
南桑发布了新的文献求助10
34秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3292087
求助须知:如何正确求助?哪些是违规求助? 2928499
关于积分的说明 8437215
捐赠科研通 2600507
什么是DOI,文献DOI怎么找? 1419116
科研通“疑难数据库(出版商)”最低求助积分说明 660237
邀请新用户注册赠送积分活动 642866