摩擦电效应
能量收集
机制(生物学)
机械能
纳米发生器
电势能
电容器
功率(物理)
静电感应
工作(物理)
联轴节(管道)
能量(信号处理)
能量转换
电压
材料科学
计算机科学
电气工程
工程类
机械工程
物理
电极
量子力学
复合材料
热力学
作者
Lei Zhai,Lingxiao Gao,Ziying Wang,Kejie Dai,Shuai Wu,Xiaojing Mu
出处
期刊:Nanomaterials
[MDPI AG]
日期:2022-03-11
卷期号:12 (6): 933-933
被引量:17
摘要
Energy-harvesting devices based on a single energy conversion mechanism generally have a low output and low conversion efficiency. To solve this problem, an energy harvester coupled with a triboelectric mechanism and electrostatic mechanism for biomechanical energy harvesting is presented. The output performances of the device coupled with a triboelectric mechanism and electrostatic mechanism were systematically studied through principle analysis, simulation, and experimental demonstration. Experiments showed that the output performance of the device was greatly improved by coupling the electrostatic induction mechanisms, and a sustainable and enhanced peak power of approximately 289 μW was produced when the external impedance was 100 MΩ, which gave over a 46-fold enhancement to the conventional single triboelectric conversion mechanism. Moreover, it showed higher resolution for motion states compared with the conventional triboelectric nanogenerator, and can precisely and constantly monitor and distinguish various motion states, including stepping, walking, running, and jumping. Furthermore, it can charge a capacitor of 10 μF to 3 V within 2 min and light up 16 LEDs. On this basis, a self-powered access control system, based on gait recognition, was successfully demonstrated. This work proposes a novel and cost-effective method for biomechanical energy harvesting, which provides a more convenient choice for human motion status monitoring and can be widely used in personnel identification systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI