Engineering solutions to breath tests based on an e-nose system for silicosis screening and early detection in miners

矽肺 电子鼻 人工智能 气体分析呼吸 鼻子 医学 环境卫生 内科学 工程类 医学物理学 病理 计算机科学 外科 解剖
作者
Wufan Xuan,Lina Zheng,Benjamin R. Bunes,Nichole Crane,Fubao Zhou,Ling Zang
出处
期刊:Journal of Breath Research [IOP Publishing]
卷期号:16 (3): 036001-036001 被引量:16
标识
DOI:10.1088/1752-7163/ac5f13
摘要

This study aims to develop an engineering solution to breath tests using an electronic nose (e-nose), and evaluate its diagnosis accuracy for silicosis. Influencing factors of this technique were explored. 398 non-silicosis miners and 221 silicosis miners were enrolled in this cross-sectional study. Exhaled breath was analyzed by an array of 16 organic nanofiber sensors along with a customized sample processing system. Principal component analysis was used to visualize the breath data, and classifiers were trained by two improved cost-sensitive ensemble algorithms (random forest and extreme gradient boosting) and two classical algorithms (K-nearest neighbor and support vector machine). All subjects were included to train the screening model, and an early detection model was run with silicosis cases in stage I. Both 5-fold cross-validation and external validation were adopted. Difference in classifiers caused by algorithms and subjects was quantified using a two-factor analysis of variance. The association between personal smoking habits and classification was investigated by the chi-square test. Classifiers of ensemble learning performed well in both screening and early detection model, with an accuracy range of 0.817-0.987. Classical classifiers showed relatively worse performance. Besides, the ensemble algorithm type and silicosis cases inclusion had no significant effect on classification (p> 0.05). There was no connection between personal smoking habits and classification accuracy. Breath tests based on an e-nose consisted of 16× sensor array performed well in silicosis screening and early detection. Raw data input showed a more significant effect on classification compared with the algorithm. Personal smoking habits had little impact on models, supporting the applicability of models in large-scale silicosis screening. The e-nose technique and the breath analysis methods reported are expected to provide a quick and accurate screening for silicosis, and extensible for other diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研鸟发布了新的文献求助10
2秒前
3秒前
3秒前
123完成签到,获得积分20
5秒前
5秒前
阿宋完成签到,获得积分20
7秒前
Jasper应助ltutui7采纳,获得10
8秒前
123发布了新的文献求助10
9秒前
666应助风华采纳,获得10
10秒前
666应助科研鸟采纳,获得10
10秒前
阿泽完成签到,获得积分10
11秒前
zhang568完成签到,获得积分10
12秒前
爱听歌的沁完成签到,获得积分10
13秒前
Yanki完成签到,获得积分10
13秒前
pluto应助二三采纳,获得10
14秒前
Chenzhs完成签到,获得积分10
15秒前
千俞完成签到 ,获得积分10
16秒前
哈哈完成签到,获得积分10
17秒前
17秒前
王瑞完成签到,获得积分10
18秒前
Hello应助谢博敦采纳,获得10
18秒前
科研小灵通完成签到,获得积分10
19秒前
哈哈哈哈发布了新的文献求助10
19秒前
20秒前
21秒前
21秒前
嘉人完成签到 ,获得积分10
21秒前
泉竹晓筱完成签到,获得积分10
24秒前
生椰拿铁不加生椰完成签到 ,获得积分10
25秒前
27秒前
丘比特应助Tang采纳,获得10
28秒前
王相博发布了新的文献求助10
30秒前
30秒前
Rin333完成签到,获得积分10
30秒前
666应助二三采纳,获得10
31秒前
33秒前
33秒前
熊猫小肿完成签到,获得积分10
34秒前
zhaoshao完成签到,获得积分10
34秒前
哈哈哈哈完成签到,获得积分10
34秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966344
求助须知:如何正确求助?哪些是违规求助? 3511761
关于积分的说明 11159641
捐赠科研通 3246353
什么是DOI,文献DOI怎么找? 1793415
邀请新用户注册赠送积分活动 874417
科研通“疑难数据库(出版商)”最低求助积分说明 804374