Engineering solutions to breath tests based on an e-nose system for silicosis screening and early detection in miners

矽肺 电子鼻 人工智能 气体分析呼吸 鼻子 医学 环境卫生 内科学 工程类 医学物理学 病理 计算机科学 外科 解剖
作者
Wufan Xuan,Lina Zheng,Benjamin R. Bunes,Nichole Crane,Fubao Zhou,Ling Zang
出处
期刊:Journal of Breath Research [IOP Publishing]
卷期号:16 (3): 036001-036001 被引量:16
标识
DOI:10.1088/1752-7163/ac5f13
摘要

This study aims to develop an engineering solution to breath tests using an electronic nose (e-nose), and evaluate its diagnosis accuracy for silicosis. Influencing factors of this technique were explored. 398 non-silicosis miners and 221 silicosis miners were enrolled in this cross-sectional study. Exhaled breath was analyzed by an array of 16 organic nanofiber sensors along with a customized sample processing system. Principal component analysis was used to visualize the breath data, and classifiers were trained by two improved cost-sensitive ensemble algorithms (random forest and extreme gradient boosting) and two classical algorithms (K-nearest neighbor and support vector machine). All subjects were included to train the screening model, and an early detection model was run with silicosis cases in stage I. Both 5-fold cross-validation and external validation were adopted. Difference in classifiers caused by algorithms and subjects was quantified using a two-factor analysis of variance. The association between personal smoking habits and classification was investigated by the chi-square test. Classifiers of ensemble learning performed well in both screening and early detection model, with an accuracy range of 0.817-0.987. Classical classifiers showed relatively worse performance. Besides, the ensemble algorithm type and silicosis cases inclusion had no significant effect on classification (p> 0.05). There was no connection between personal smoking habits and classification accuracy. Breath tests based on an e-nose consisted of 16× sensor array performed well in silicosis screening and early detection. Raw data input showed a more significant effect on classification compared with the algorithm. Personal smoking habits had little impact on models, supporting the applicability of models in large-scale silicosis screening. The e-nose technique and the breath analysis methods reported are expected to provide a quick and accurate screening for silicosis, and extensible for other diseases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
上官若男应助Gracywss采纳,获得20
1秒前
关于我发布了新的文献求助20
1秒前
ganjqly完成签到,获得积分10
1秒前
阿飞完成签到,获得积分10
1秒前
裴果完成签到,获得积分10
1秒前
2秒前
樱铃完成签到,获得积分10
2秒前
啦啦啦完成签到 ,获得积分10
2秒前
yk完成签到 ,获得积分10
3秒前
我睡觉的时候不困完成签到 ,获得积分10
3秒前
阿苏完成签到 ,获得积分10
3秒前
颖火虫2588完成签到,获得积分10
3秒前
3秒前
4秒前
畅快雁山完成签到,获得积分10
4秒前
4秒前
寻找组织应助鳗鱼向日葵采纳,获得30
4秒前
稳住完成签到,获得积分10
5秒前
芝士完成签到,获得积分10
5秒前
善学以致用应助liulangnmg采纳,获得10
5秒前
Frank应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
Frank应助科研通管家采纳,获得10
6秒前
111aa发布了新的文献求助10
6秒前
子车茗应助超好运采纳,获得30
6秒前
转山转水转出了自我完成签到,获得积分10
7秒前
8秒前
8秒前
领导范儿应助宓广缘采纳,获得10
9秒前
忐忑的远山完成签到,获得积分10
10秒前
hq6045x完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
hhp完成签到,获得积分10
11秒前
端庄书雁完成签到,获得积分10
11秒前
11秒前
by完成签到,获得积分10
12秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573719
求助须知:如何正确求助?哪些是违规求助? 4659992
关于积分的说明 14727079
捐赠科研通 4599835
什么是DOI,文献DOI怎么找? 2524518
邀请新用户注册赠送积分活动 1494863
关于科研通互助平台的介绍 1464959