Engineering solutions to breath tests based on an e-nose system for silicosis screening and early detection in miners

矽肺 电子鼻 人工智能 气体分析呼吸 鼻子 医学 环境卫生 内科学 工程类 医学物理学 病理 计算机科学 外科 解剖
作者
Wufan Xuan,Lina Zheng,Benjamin R. Bunes,Nichole Crane,Fubao Zhou,Ling Zang
出处
期刊:Journal of Breath Research [IOP Publishing]
卷期号:16 (3): 036001-036001 被引量:15
标识
DOI:10.1088/1752-7163/ac5f13
摘要

This study aims to develop an engineering solution to breath tests using an electronic nose (e-nose), and evaluate its diagnosis accuracy for silicosis. Influencing factors of this technique were explored. 398 non-silicosis miners and 221 silicosis miners were enrolled in this cross-sectional study. Exhaled breath was analyzed by an array of 16 organic nanofiber sensors along with a customized sample processing system. Principal component analysis was used to visualize the breath data, and classifiers were trained by two improved cost-sensitive ensemble algorithms (random forest and extreme gradient boosting) and two classical algorithms (K-nearest neighbor and support vector machine). All subjects were included to train the screening model, and an early detection model was run with silicosis cases in stage I. Both 5-fold cross-validation and external validation were adopted. Difference in classifiers caused by algorithms and subjects was quantified using a two-factor analysis of variance. The association between personal smoking habits and classification was investigated by the chi-square test. Classifiers of ensemble learning performed well in both screening and early detection model, with an accuracy range of 0.817-0.987. Classical classifiers showed relatively worse performance. Besides, the ensemble algorithm type and silicosis cases inclusion had no significant effect on classification (p> 0.05). There was no connection between personal smoking habits and classification accuracy. Breath tests based on an e-nose consisted of 16× sensor array performed well in silicosis screening and early detection. Raw data input showed a more significant effect on classification compared with the algorithm. Personal smoking habits had little impact on models, supporting the applicability of models in large-scale silicosis screening. The e-nose technique and the breath analysis methods reported are expected to provide a quick and accurate screening for silicosis, and extensible for other diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
快乐应助林小雨采纳,获得10
刚刚
tang完成签到,获得积分10
1秒前
尹天扬完成签到,获得积分10
1秒前
A灰机发布了新的文献求助10
2秒前
充电宝应助yzm788695采纳,获得10
3秒前
Lazarus_x完成签到,获得积分10
3秒前
没有鹿角的羊完成签到,获得积分10
3秒前
淡定的花生完成签到 ,获得积分10
3秒前
简单如容完成签到,获得积分10
4秒前
learn应助禹代秋采纳,获得10
4秒前
狗妹那塞完成签到,获得积分10
6秒前
安雨发布了新的文献求助10
7秒前
言言右完成签到,获得积分10
7秒前
柳树完成签到,获得积分10
9秒前
junzilan完成签到,获得积分10
11秒前
xiaoguoshuoshi完成签到,获得积分10
11秒前
香蕉擎发布了新的文献求助10
15秒前
希望天下0贩的0应助噜噜采纳,获得10
16秒前
领导范儿应助Ry采纳,获得10
17秒前
18秒前
18秒前
斯文钢笔发布了新的文献求助20
19秒前
20秒前
禹代秋完成签到,获得积分10
20秒前
胖头鱼发布了新的文献求助10
21秒前
搜集达人应助月亮不见了采纳,获得10
23秒前
23秒前
英俊的铭应助A灰机采纳,获得10
24秒前
清风~徐来完成签到 ,获得积分10
24秒前
夕荀发布了新的文献求助20
26秒前
漠之梦完成签到,获得积分10
26秒前
27秒前
27秒前
打打应助斯文媚颜采纳,获得10
28秒前
sheep发布了新的文献求助10
28秒前
starlx0813完成签到 ,获得积分10
28秒前
28秒前
芊芊完成签到 ,获得积分10
29秒前
香蕉擎完成签到,获得积分10
29秒前
LQQR发布了新的文献求助20
29秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162753
求助须知:如何正确求助?哪些是违规求助? 2813664
关于积分的说明 7901471
捐赠科研通 2473244
什么是DOI,文献DOI怎么找? 1316693
科研通“疑难数据库(出版商)”最低求助积分说明 631482
版权声明 602175