估计员
分歧(语言学)
泊松分布
协变量
数学
维数(图论)
泊松回归
计量经济学
统计
应用数学
Kullback-Leibler散度
样本量测定
人口
纯数学
人口学
社会学
哲学
语言学
作者
Jiahui Zou,Wendun Wang,Xinyu Zhang,Guohua Zou
出处
期刊:Econometric Reviews
日期:2022-03-15
卷期号:41 (7): 775-805
被引量:13
标识
DOI:10.1080/07474938.2022.2047508
摘要
This paper proposes a new model averaging method to address model uncertainty in Poisson regressions, allowing the dimension of covariates to increase with the sample size. We derive an unbiased estimator of the Kullback–Leibler (KL) divergence to choose averaging weights. We show that when all candidate models are misspecified, the proposed estimate is asymptotically optimal by achieving the least KL divergence among all possible averaging estimators. In another situation where correct models exist in the model space, our method can produce consistent coefficient estimates. We apply the proposed techniques to study the determinants and predict corporate innovation outcomes measured by the number of patents.
科研通智能强力驱动
Strongly Powered by AbleSci AI