A Systematic Analysis on the Impact of Contextual Information on Point-of-Interest Recommendation

计算机科学 兴趣点 人气 范畴变量 背景(考古学) 情报检索 推荐系统 点(几何) 数据挖掘 数据科学 人工智能 机器学习 地理 数学 社会心理学 心理学 考古 几何学
作者
Hossein A. Rahmani,Mohammad Aliannejadi,Mitra Baratchi,Fábio Crestani
出处
期刊:ACM Transactions on Information Systems 卷期号:40 (4): 1-35 被引量:12
标识
DOI:10.1145/3508478
摘要

As the popularity of Location-based Social Networks increases, designing accurate models for Point-of-Interest (POI) recommendation receives more attention. POI recommendation is often performed by incorporating contextual information into previously designed recommendation algorithms. Some of the major contextual information that has been considered in POI recommendation are the location attributes (i.e., exact coordinates of a location, category, and check-in time), the user attributes (i.e., comments, reviews, tips, and check-in made to the locations), and other information, such as the distance of the POI from user’s main activity location and the social tie between users. The right selection of such factors can significantly impact the performance of the POI recommendation. However, previous research does not consider the impact of the combination of these different factors. In this article, we propose different contextual models and analyze the fusion of different major contextual information in POI recommendation. The major contributions of this article are as follows: (i) providing an extensive survey of context-aware location recommendation; (ii) quantifying and analyzing the impact of different contextual information (e.g., social, temporal, spatial, and categorical) in the POI recommendation on available baselines and two new linear and non-linear models, which can incorporate all the major contextual information into a single recommendation model; and (iii) evaluating the considered models using two well-known real-world datasets. Our results indicate that while modeling geographical and temporal influences can improve recommendation quality, fusing all other contextual information into a recommendation model is not always the best strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大江大河发布了新的文献求助10
刚刚
慕青应助科研通管家采纳,获得10
刚刚
刚刚
顾矜应助科研通管家采纳,获得10
刚刚
刚刚
义气觅双发布了新的文献求助10
1秒前
1秒前
小狼应助Yon采纳,获得10
1秒前
2秒前
2秒前
semon发布了新的文献求助10
2秒前
2秒前
精明秋发布了新的文献求助10
3秒前
3秒前
3秒前
劳工帮关注了科研通微信公众号
3秒前
开朗誉发布了新的文献求助10
3秒前
3秒前
坚强丹雪完成签到,获得积分10
3秒前
卜乌完成签到,获得积分10
3秒前
waayu完成签到 ,获得积分10
3秒前
Hear发布了新的文献求助10
3秒前
4秒前
111发布了新的文献求助10
4秒前
莫言发布了新的文献求助100
4秒前
5秒前
Lyj完成签到,获得积分20
5秒前
lijiajun完成签到,获得积分10
5秒前
Ava发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
little发布了新的文献求助10
6秒前
可靠的映秋完成签到,获得积分10
6秒前
6秒前
吴艳琼完成签到,获得积分10
6秒前
ZJPPPP发布了新的文献求助10
7秒前
lijiajun发布了新的文献求助10
8秒前
夏樱发布了新的文献求助30
8秒前
halona驳回了Lucas应助
8秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143314
求助须知:如何正确求助?哪些是违规求助? 2794476
关于积分的说明 7811257
捐赠科研通 2450676
什么是DOI,文献DOI怎么找? 1303944
科研通“疑难数据库(出版商)”最低求助积分说明 627160
版权声明 601386