光活性层
材料科学
堆积
聚合物太阳能电池
三元运算
聚合物
能量转换效率
光电子学
活动层
图层(电子)
接受者
化学工程
纳米技术
复合材料
有机化学
化学
薄膜晶体管
程序设计语言
计算机科学
工程类
物理
凝聚态物理
作者
Wenqing Zhang,Chenkai Sun,Indunil Angunawela,Lei Meng,Shucheng Qin,Liuyang Zhou,Shaman Li,Hongmei Zhuo,Guang Yang,Zhiguo Zhang,Harald Ade,Yongfang Li
标识
DOI:10.1002/adma.202108749
摘要
All-polymer solar cells (all-PSCs) have drawn growing attention and achieved tremendous progress recently, but their power conversion efficiency (PCE) still lags behind small-molecule-acceptor (SMA)-based PSCs due to the relative difficulty on morphology control of polymer photoactive blends. Here, low-cost PTQ10 is introduced as a second polymer donor (a third component) into the PM6:PY-IT blend to finely tune the energy-level matching and microscopic morphology of the polymer blend photoactive layer. The addition of PTQ10 decreases the π-π stacking distance, and increases the π-π stacking coherence length and the ordered face-on molecular packing orientation, which improves the charge separation and transport in the photoactive layer. Moreover, the deeper highest occupied molecular orbital energy level of the PTQ10 polymer donor than PM6 leads to higher open-circuit voltage of the ternary all-PSCs. As a result, a PCE of 16.52% is achieved for ternary all-PSCs, which is one of the highest PCEs for all-PSCs. In addition, the ternary devices exhibit a high tolerance of the photoactive layer thickness with high PCEs of 15.27% and 13.91% at photoactive layer thickness of ≈205 and ≈306 nm, respectively, which are the highest PCEs so far for all-PSCs with a thick photoactive layer.
科研通智能强力驱动
Strongly Powered by AbleSci AI