亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Artificial intelligence-assisted staging in Barrett’s carcinoma

医学 阶段(地层学) 内镜超声 腺癌 内科学 胃肠病学 放射科 癌症 古生物学 生物
作者
Mate Knabe,Lukas Welsch,Tobias Blasberg,Elisa Müller,Myriam Heilani,Christoph Bergen,Eva Herrmann,Andrea May
出处
期刊:Endoscopy [Georg Thieme Verlag KG]
卷期号:54 (12): 1191-1197 被引量:21
标识
DOI:10.1055/a-1811-9407
摘要

Artificial intelligence (AI) is increasingly being used to detect neoplasia and interpret endoscopic images. The T stage of Barrett's carcinoma is a major criterion for subsequent treatment decisions. Although endoscopic ultrasound is still the standard for preoperative staging, its value is debatable. Novel tools are required to assist with staging, to optimize results. This study aimed to investigate the accuracy of T stage of Barrett's carcinoma by an AI system based on endoscopic images.1020 images (minimum one per patient, maximum three) from 577 patients with Barrett's adenocarcinoma were used for training and internal validation of a convolutional neural network. In all, 821 images were selected to train the model and 199 images were used for validation.AI recognized Barrett's mucosa without neoplasia with an accuracy of 85 % (95 %CI 82.7-87.1). Mucosal cancer was identified with a sensitivity of 72 % (95 %CI 67.5-76.4), specificity of 64 % (95 %CI 60.0-68.4), and accuracy of 68 % (95 %CI 64.6-70.7). The sensitivity, specificity, and accuracy for early Barrett's neoplasia < T1b sm2 were 57 % (95 %CI 51.8-61.0), 77 % (95 %CI 72.3-80.2), and 67 % (95 %CI 63.4-69.5), respectively. More advanced stages (T3/T4) were diagnosed correctly with a sensitivity of 71 % (95 %CI 65.1-76.7) and specificity of 73 % (95 %CI 69.7-76.5). The overall accuracy was 73 % (95 %CI 69.6-75.5).The AI system identified esophageal cancer with high accuracy, suggesting its potential to assist endoscopists in clinical decision making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
东溟渔夫发布了新的文献求助10
9秒前
牛牛月饼完成签到,获得积分10
16秒前
Akim应助东溟渔夫采纳,获得10
16秒前
BBQ关闭了BBQ文献求助
17秒前
18秒前
1分钟前
v哈哈发布了新的文献求助10
1分钟前
脑洞疼应助科研通管家采纳,获得10
1分钟前
Ming发布了新的文献求助10
1分钟前
SciGPT应助Ming采纳,获得10
1分钟前
瘦瘦的师发布了新的文献求助10
2分钟前
大模型应助zhengzhster采纳,获得10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
自律发布了新的文献求助10
2分钟前
自律完成签到,获得积分10
2分钟前
BBQ发布了新的文献求助10
3分钟前
Ezekiel给Ezekiel的求助进行了留言
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
BBQ完成签到,获得积分10
3分钟前
lim完成签到,获得积分10
3分钟前
3分钟前
zhengzhster发布了新的文献求助10
4分钟前
小邓完成签到,获得积分10
4分钟前
可乐发布了新的文献求助30
4分钟前
量子星尘发布了新的文献求助10
4分钟前
小于完成签到,获得积分10
4分钟前
4分钟前
Ezekiel发布了新的文献求助10
4分钟前
上官枫完成签到 ,获得积分10
5分钟前
5分钟前
Ming发布了新的文献求助10
5分钟前
小于完成签到,获得积分10
5分钟前
Ming完成签到,获得积分10
5分钟前
merrylake完成签到 ,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
vivishe发布了新的文献求助10
5分钟前
vivishe完成签到,获得积分10
5分钟前
George发布了新的文献求助10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664448
求助须知:如何正确求助?哪些是违规求助? 4862399
关于积分的说明 15107785
捐赠科研通 4823068
什么是DOI,文献DOI怎么找? 2581898
邀请新用户注册赠送积分活动 1536037
关于科研通互助平台的介绍 1494433