Artificial intelligence-assisted staging in Barrett’s carcinoma

医学 阶段(地层学) 内镜超声 腺癌 内科学 胃肠病学 放射科 癌症 古生物学 生物
作者
Mate Knabe,Lukas Welsch,Tobias Blasberg,Elisa Müller,Myriam Heilani,Christoph Bergen,Eva Herrmann,Andrea May
出处
期刊:Endoscopy [Thieme Medical Publishers (Germany)]
卷期号:54 (12): 1191-1197 被引量:21
标识
DOI:10.1055/a-1811-9407
摘要

Artificial intelligence (AI) is increasingly being used to detect neoplasia and interpret endoscopic images. The T stage of Barrett's carcinoma is a major criterion for subsequent treatment decisions. Although endoscopic ultrasound is still the standard for preoperative staging, its value is debatable. Novel tools are required to assist with staging, to optimize results. This study aimed to investigate the accuracy of T stage of Barrett's carcinoma by an AI system based on endoscopic images.1020 images (minimum one per patient, maximum three) from 577 patients with Barrett's adenocarcinoma were used for training and internal validation of a convolutional neural network. In all, 821 images were selected to train the model and 199 images were used for validation.AI recognized Barrett's mucosa without neoplasia with an accuracy of 85 % (95 %CI 82.7-87.1). Mucosal cancer was identified with a sensitivity of 72 % (95 %CI 67.5-76.4), specificity of 64 % (95 %CI 60.0-68.4), and accuracy of 68 % (95 %CI 64.6-70.7). The sensitivity, specificity, and accuracy for early Barrett's neoplasia < T1b sm2 were 57 % (95 %CI 51.8-61.0), 77 % (95 %CI 72.3-80.2), and 67 % (95 %CI 63.4-69.5), respectively. More advanced stages (T3/T4) were diagnosed correctly with a sensitivity of 71 % (95 %CI 65.1-76.7) and specificity of 73 % (95 %CI 69.7-76.5). The overall accuracy was 73 % (95 %CI 69.6-75.5).The AI system identified esophageal cancer with high accuracy, suggesting its potential to assist endoscopists in clinical decision making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助glycine采纳,获得10
1秒前
山君完成签到 ,获得积分10
1秒前
如意草丛完成签到,获得积分10
1秒前
深情安青应助风起采纳,获得10
1秒前
何照人完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
洪艳发布了新的文献求助30
2秒前
Herman发布了新的文献求助10
2秒前
2秒前
孙悟空大巨人完成签到,获得积分10
3秒前
sptyzl完成签到 ,获得积分10
3秒前
3秒前
蛋白发布了新的文献求助10
4秒前
4秒前
5秒前
难过白易完成签到,获得积分10
5秒前
6秒前
汉堡包应助ZYao65采纳,获得10
6秒前
fighting完成签到,获得积分20
6秒前
打打应助Cindy采纳,获得10
6秒前
小哥完成签到,获得积分10
7秒前
善学以致用应助小浣熊采纳,获得10
7秒前
Alex应助123采纳,获得20
8秒前
8秒前
JQing应助就晚安喽采纳,获得10
8秒前
霞霞发布了新的文献求助10
8秒前
科目三应助白菜也挺贵采纳,获得10
8秒前
七七发布了新的文献求助10
8秒前
圈哥完成签到,获得积分10
9秒前
9秒前
9秒前
13发布了新的文献求助10
9秒前
fighting发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
11秒前
壮观的白羊完成签到 ,获得积分10
12秒前
充电宝应助zj采纳,获得10
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600474
求助须知:如何正确求助?哪些是违规求助? 4010608
关于积分的说明 12416866
捐赠科研通 3690360
什么是DOI,文献DOI怎么找? 2034326
邀请新用户注册赠送积分活动 1067728
科研通“疑难数据库(出版商)”最低求助积分说明 952513