Artificial intelligence-assisted staging in Barrett’s carcinoma

医学 阶段(地层学) 内镜超声 腺癌 内科学 胃肠病学 放射科 癌症 古生物学 生物
作者
Mate Knabe,Lukas Welsch,Tobias Blasberg,Elisa Müller,Myriam Heilani,Christoph Bergen,Eva Herrmann,Andrea May
出处
期刊:Endoscopy [Thieme Medical Publishers (Germany)]
卷期号:54 (12): 1191-1197 被引量:21
标识
DOI:10.1055/a-1811-9407
摘要

Artificial intelligence (AI) is increasingly being used to detect neoplasia and interpret endoscopic images. The T stage of Barrett's carcinoma is a major criterion for subsequent treatment decisions. Although endoscopic ultrasound is still the standard for preoperative staging, its value is debatable. Novel tools are required to assist with staging, to optimize results. This study aimed to investigate the accuracy of T stage of Barrett's carcinoma by an AI system based on endoscopic images.1020 images (minimum one per patient, maximum three) from 577 patients with Barrett's adenocarcinoma were used for training and internal validation of a convolutional neural network. In all, 821 images were selected to train the model and 199 images were used for validation.AI recognized Barrett's mucosa without neoplasia with an accuracy of 85 % (95 %CI 82.7-87.1). Mucosal cancer was identified with a sensitivity of 72 % (95 %CI 67.5-76.4), specificity of 64 % (95 %CI 60.0-68.4), and accuracy of 68 % (95 %CI 64.6-70.7). The sensitivity, specificity, and accuracy for early Barrett's neoplasia < T1b sm2 were 57 % (95 %CI 51.8-61.0), 77 % (95 %CI 72.3-80.2), and 67 % (95 %CI 63.4-69.5), respectively. More advanced stages (T3/T4) were diagnosed correctly with a sensitivity of 71 % (95 %CI 65.1-76.7) and specificity of 73 % (95 %CI 69.7-76.5). The overall accuracy was 73 % (95 %CI 69.6-75.5).The AI system identified esophageal cancer with high accuracy, suggesting its potential to assist endoscopists in clinical decision making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
起飞上天发布了新的文献求助10
1秒前
2秒前
4秒前
Flanker完成签到,获得积分10
7秒前
伶俐问薇完成签到,获得积分10
7秒前
kento发布了新的文献求助10
7秒前
7秒前
zyf发布了新的文献求助10
8秒前
丹丹丹发布了新的文献求助10
9秒前
10秒前
Kail完成签到,获得积分10
14秒前
李萌萌发布了新的文献求助20
14秒前
chen应助木头人采纳,获得10
15秒前
15秒前
17秒前
小怡子发布了新的文献求助10
18秒前
彭珊发布了新的文献求助30
18秒前
粉色完成签到,获得积分10
19秒前
orixero应助冬瓜熊采纳,获得10
20秒前
王志威发布了新的文献求助10
20秒前
小马甲应助科研通管家采纳,获得10
24秒前
Orange应助科研通管家采纳,获得10
24秒前
daifei完成签到,获得积分10
24秒前
星辰大海应助小怡子采纳,获得10
24秒前
长岛的雪发布了新的文献求助10
25秒前
sail完成签到,获得积分10
26秒前
SYLH应助CP采纳,获得10
26秒前
狗妹那塞完成签到,获得积分10
27秒前
zyf完成签到,获得积分10
30秒前
Akim应助迷人岩采纳,获得10
30秒前
思源应助Jiangzhibing采纳,获得10
31秒前
Jasper应助Jiangzhibing采纳,获得10
31秒前
orixero应助Jiangzhibing采纳,获得10
31秒前
31秒前
斯文败类应助Jiangzhibing采纳,获得10
31秒前
斯文败类应助Jiangzhibing采纳,获得10
31秒前
田様应助Jiangzhibing采纳,获得10
31秒前
帅气一刀完成签到,获得积分10
31秒前
搜集达人应助王志威采纳,获得10
33秒前
斯文败类应助沉默不言采纳,获得10
34秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951053
求助须知:如何正确求助?哪些是违规求助? 3496470
关于积分的说明 11082221
捐赠科研通 3226913
什么是DOI,文献DOI怎么找? 1784016
邀请新用户注册赠送积分活动 868165
科研通“疑难数据库(出版商)”最低求助积分说明 801030