纳米棒
材料科学
阳极
介电谱
煅烧
循环伏安法
电化学
热液循环
烧结
扩散
化学工程
钠
纳米技术
电极
冶金
化学
生物化学
热力学
物理
工程类
物理化学
催化作用
作者
Limin Zhu,Xinxin Yin,Chunliang Pan,Qing Han,Yongxia Miao,Jianping Liu,Lingling Xie,Xiaoyu Cao
标识
DOI:10.1016/j.jallcom.2022.164306
摘要
In this study, Na2Ti6O13 nanorods with large interlayer spacing (about 0.798 nm) were synthesized by the hydrothermal and solid-phase sintering methods, and applied to the anode of sodium ion batteries (SIBs). The influence of different calcination temperatures on the electrochemical properties of Na2Ti6O13 nanorods were all studied. Benefitting from the nanorods structure and the large interlayer spacing, the Na2Ti6O13 prepared at 800 °C possessed fast Na+ diffusion and achieved high discharge capacities of 168.2 and 115.2 mA h g−1 at different current densities of 20 and 500 mA g−1, respectively, and remained at 131.1 and 96.7 mA h g−1 after 100 cycles, which exhibited the best cycling stability, fast Na+ diffusion characteristics, and excellent rate performance. Supported by electrochemical impedance spectroscopy, we found that the value of Rct became larger and the DNa+ became smaller with the progress of charge and discharge, which might be the cause of the decrease in the specific discharge capacity. The detailed analysis of cyclic voltammetry test confirmed that the proportion of pseudo-capacitance gradually decreased with the electrochemical reaction process keeping, from 83.8% at the beginning to 60.9% at the 100th cycle. This work establishes a valuable basis for the future study of Na2Ti6O13 as outstanding anode material for SIBs.
科研通智能强力驱动
Strongly Powered by AbleSci AI