Bibliometric analysis of landslide research based on the WOS database

潜在Dirichlet分配 山崩 科学网 中国 图书馆学 中国科学院 地理 数据库 地图学 地质学 计算机科学 人工智能 考古 主题模型 政治学 地震学 法学 梅德林
作者
Yuandong Huang,Chong Xu,Xujiao Zhang,Lei Li
出处
期刊:Natural hazards research [Elsevier]
卷期号:2 (2): 49-61 被引量:38
标识
DOI:10.1016/j.nhres.2022.02.001
摘要

This work, based on the Web of Science (WOS) database, collected 20,888 research articles published from 1982 to November 2021 on the topic of landslide(s). We performed a bibliometric analysis for the year, author, institution, country/region, foundation program, journal, and keywords. The abstracts in these articles are also analyzed in terms of the Latent Dirichlet Allocation (LDA) model in machine learning. Results show that the overall annual publication number is steadily increasing from 8 in 1982 to 2432 in 2020. Pradhan, Biswajeet, and Xu, Qiang are the authors with the most published papers, and Guzzetti, Fausto, and Dai, Fuchu are the authors with the highest average citations per article. The Chinese Academy of Sciences and the Italian Consiglio Nazionale Delle Ricerche are the institutions contributing the most articles. China and the United States contribute the highest article number, and Malaysia and Norway have the highest average citations per article. The journals Landslides and Engineering Geology host the most abundant landslide-related articles, while Geology and Environmental Geology have the most average citations per article. The number of articles funded by the Chinese National Natural Science Foundation far exceeds that of other funds. The keywords with high overall frequency are "model", "GIS", "susceptibility", "earthquake", "remote sensing", "slope stability", "deformation", etc. The LDA model divides the articles into 19 topics, among which machine learning has the fastest growth rate. The top three topics in terms of frequency are ''risk assessment'', ''shallow landslides'' and ''evolution process and numerical simulation''. The keyword analysis is further clustered into four research areas, namely "Quaternary geology and geomorphology", "landslide engineering geology", "landslide database and risk assessment", and "landslide monitoring and warning".
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱喝冰可乐完成签到,获得积分20
1秒前
jia完成签到,获得积分10
1秒前
传奇3应助HopeStar采纳,获得10
2秒前
liike发布了新的文献求助10
2秒前
melodyezi完成签到,获得积分20
2秒前
要开心完成签到,获得积分10
2秒前
喜洋洋完成签到,获得积分20
2秒前
3秒前
4秒前
cc完成签到,获得积分20
4秒前
科目三应助芋圆Z.采纳,获得10
5秒前
情怀应助Tonson采纳,获得10
5秒前
5秒前
Tutusamo完成签到 ,获得积分10
5秒前
无限的隶发布了新的文献求助10
5秒前
科目三应助Yeong采纳,获得10
5秒前
Ll发布了新的文献求助10
6秒前
6秒前
思源应助melodyezi采纳,获得10
7秒前
蓝色条纹衫完成签到 ,获得积分10
7秒前
8秒前
8秒前
kingwhitewing发布了新的文献求助10
8秒前
灵巧汉堡完成签到 ,获得积分10
9秒前
SciGPT应助幸福胡萝卜采纳,获得10
10秒前
积极晓兰完成签到,获得积分10
10秒前
10秒前
离子电池完成签到,获得积分10
10秒前
小熊饼干完成签到,获得积分10
10秒前
Ryuichi完成签到 ,获得积分10
11秒前
冷静的平安完成签到,获得积分20
11秒前
周士乐完成签到,获得积分10
11秒前
juan完成签到,获得积分10
12秒前
cheeselemon182完成签到,获得积分10
12秒前
英勇凝旋完成签到,获得积分10
13秒前
HopeStar发布了新的文献求助10
13秒前
13秒前
石幻枫完成签到 ,获得积分10
14秒前
生动盼秋发布了新的文献求助10
14秒前
韭黄发布了新的文献求助10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759