Automatic pediatric congenital heart disease classification based on heart sound signal

听诊器 听诊 心音 计算机科学 语音识别 心脏病 分割 人工智能 阿达布思 音频信号 分类器(UML) 医学 内科学 放射科 语音编码
作者
Weize Xu,Kai Yu,Jing‐Jing Ye,Haomin Li,Jiajia Chen,Fei Yin,Jingfang Xu,Jihua Zhu,Die Li,Qiang Shu
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:126: 102257-102257 被引量:33
标识
DOI:10.1016/j.artmed.2022.102257
摘要

Congenital heart diseases (CHD) are the most common birth defects, and the early diagnosis of CHD is crucial for CHD therapy. However, there are relatively few studies on intelligent auscultation for pediatric CHD, due to the fact that effective cooperation of the patient is required for the acquisition of useable heart sounds by electronic stethoscopes, yet the quality of heart sounds in pediatric is poor compared to adults due to the factors such as crying and breath sounds. This paper presents a novel pediatric CHD intelligent auscultation method based on electronic stethoscope. Firstly, a pediatric CHD heart sound database with a total of 941 PCG signal is established. Then a segment-based heart sound segmentation algorithm is proposed, which is based on PCG segment to achieve the segmentation of cardiac cycles, and therefore can reduce the influence of local noise to the global. Finally, the accurate classification of CHD is achieved using a majority voting classifier with Random Forest and Adaboost classifier based on 84 features containing time domain and frequency domain. Experimental results show that the performance of the proposed method is competitive, and the accuracy, sensitivity, specificity and f1-score of classification for CHD are 0.953, 0.946, 0.961 and 0.953 respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助好运来采纳,获得10
刚刚
cdercder应助街道办事部采纳,获得10
刚刚
细心碧彤发布了新的文献求助10
1秒前
exile发布了新的文献求助50
1秒前
岑岑岑发布了新的文献求助10
2秒前
3秒前
3秒前
bigstone发布了新的文献求助10
3秒前
vielate完成签到,获得积分10
4秒前
4秒前
科研通AI5应助散散采纳,获得10
4秒前
善良士萧完成签到,获得积分10
6秒前
8秒前
小郭发布了新的文献求助10
8秒前
852应助smile采纳,获得10
8秒前
8秒前
华仔应助weiwei采纳,获得10
9秒前
9秒前
斯文的寒风应助和谐夏彤采纳,获得20
10秒前
10秒前
dmy应助笑点低雅琴采纳,获得10
10秒前
12秒前
程静亭完成签到,获得积分20
13秒前
汉堡包应助微风采纳,获得10
13秒前
小亿发布了新的文献求助10
13秒前
14秒前
CodeCraft应助搬砖feng采纳,获得10
17秒前
18秒前
小白应助科研通管家采纳,获得20
18秒前
xyz应助科研通管家采纳,获得30
18秒前
xyz应助科研通管家采纳,获得30
18秒前
充电宝应助科研通管家采纳,获得30
18秒前
脑洞疼应助科研通管家采纳,获得10
18秒前
18秒前
乐乐应助科研通管家采纳,获得10
18秒前
华仔应助科研通管家采纳,获得20
18秒前
18秒前
18秒前
18秒前
18秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3745110
求助须知:如何正确求助?哪些是违规求助? 3287973
关于积分的说明 10056972
捐赠科研通 3004196
什么是DOI,文献DOI怎么找? 1649567
邀请新用户注册赠送积分活动 785428
科研通“疑难数据库(出版商)”最低求助积分说明 751066