Weakly Supervised RGB-D Salient Object Detection with Prediction Consistency Training and Active Scribble Boosting

计算机科学 人工智能 Boosting(机器学习) RGB颜色模型 杠杆(统计) 注释 像素 利用 基本事实 模式识别(心理学) 目标检测 机器学习 计算机视觉
作者
Yunqiu Xu,Xin Yu,Jing Zhang,Linchao Zhu,Dadong Wang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tip.2022.3151999
摘要

RGB-D salient object detection (SOD) has attracted increasingly more attention as it shows more robust results in complex scenes compared with RGB SOD. However, state-of-the-art RGB-D SOD approaches heavily rely on a large amount of pixel-wise annotated data for training. Such densely labeled annotations are often labor-intensive and costly. To reduce the annotation burden, we investigate RGB-D SOD from a weakly supervised perspective. More specifically, we use annotator-friendly scribble annotations as supervision signals for model training. Since scribble annotations are much sparser compared to ground-truth masks, some critical object structure information might be neglected. To preserve such structure information, we explicitly exploit the complementary edge information from two modalities (i.e., RGB and depth). Specifically, we leverage the dual-modal edge guidance and introduce a new network architecture with a dual-edge detection module and a modality-aware feature fusion module. In order to use the useful information of unlabeled pixels, we introduce a prediction consistency training scheme by comparing the predictions of two networks optimized by different strategies. Moreover, we develop an active scribble boosting strategy to provide extra supervision signals with negligible annotation cost, leading to significant SOD performance improvement. Extensive experiments on seven benchmarks validate the superiority of our proposed method. Remarkably, the proposed method with scribble annotations achieves competitive performance in comparison to fully supervised state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
热情的天蓝应助超级凡桃采纳,获得10
1秒前
1秒前
1秒前
3秒前
3秒前
xpbaby完成签到,获得积分20
4秒前
6秒前
6秒前
咖喱酥发布了新的文献求助20
7秒前
CEJ发布了新的文献求助10
7秒前
求rrr完成签到,获得积分10
9秒前
9秒前
机智秋烟完成签到,获得积分20
9秒前
9秒前
9秒前
应绝施发布了新的文献求助10
11秒前
jun完成签到 ,获得积分10
12秒前
乐乐应助老阳采纳,获得10
12秒前
Lucas应助CEJ采纳,获得10
15秒前
16秒前
潮鸣完成签到 ,获得积分10
19秒前
19秒前
21秒前
22秒前
23秒前
老阳发布了新的文献求助10
24秒前
聂青枫完成签到,获得积分10
25秒前
虾502完成签到 ,获得积分10
26秒前
欧耶完成签到,获得积分10
27秒前
正直的闭月完成签到,获得积分10
28秒前
29秒前
晴空万里完成签到,获得积分10
30秒前
30秒前
30秒前
受伤访波完成签到,获得积分10
30秒前
wwwww发布了新的文献求助10
31秒前
31秒前
32秒前
NXK发布了新的文献求助10
33秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738651
求助须知:如何正确求助?哪些是违规求助? 3282034
关于积分的说明 10027372
捐赠科研通 2998753
什么是DOI,文献DOI怎么找? 1645559
邀请新用户注册赠送积分活动 782802
科研通“疑难数据库(出版商)”最低求助积分说明 749975