计算机科学
人工智能
Boosting(机器学习)
RGB颜色模型
杠杆(统计)
注释
像素
利用
基本事实
模式识别(心理学)
目标检测
机器学习
计算机视觉
作者
Yunqiu Xu,Xin Yu,Jing Zhang,Linchao Zhu,Dadong Wang
出处
期刊:IEEE transactions on image processing
[Institute of Electrical and Electronics Engineers]
日期:2022-01-01
卷期号:: 1-1
标识
DOI:10.1109/tip.2022.3151999
摘要
RGB-D salient object detection (SOD) has attracted increasingly more attention as it shows more robust results in complex scenes compared with RGB SOD. However, state-of-the-art RGB-D SOD approaches heavily rely on a large amount of pixel-wise annotated data for training. Such densely labeled annotations are often labor-intensive and costly. To reduce the annotation burden, we investigate RGB-D SOD from a weakly supervised perspective. More specifically, we use annotator-friendly scribble annotations as supervision signals for model training. Since scribble annotations are much sparser compared to ground-truth masks, some critical object structure information might be neglected. To preserve such structure information, we explicitly exploit the complementary edge information from two modalities (i.e., RGB and depth). Specifically, we leverage the dual-modal edge guidance and introduce a new network architecture with a dual-edge detection module and a modality-aware feature fusion module. In order to use the useful information of unlabeled pixels, we introduce a prediction consistency training scheme by comparing the predictions of two networks optimized by different strategies. Moreover, we develop an active scribble boosting strategy to provide extra supervision signals with negligible annotation cost, leading to significant SOD performance improvement. Extensive experiments on seven benchmarks validate the superiority of our proposed method. Remarkably, the proposed method with scribble annotations achieves competitive performance in comparison to fully supervised state-of-the-art methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI