材料科学
阳极
尖晶石
三元运算
化学工程
退火(玻璃)
锰
热液循环
兴奋剂
过渡金属
纳米技术
电极
催化作用
复合材料
光电子学
化学
冶金
计算机科学
工程类
物理化学
程序设计语言
生物化学
作者
Zhenyan Liang,Huayao Tu,Zhen Kong,Xiaogang Yao,Deqin Xu,Shengfu Liu,Yongliang Shao,Yongzhong Wu,Xiaopeng Hao
标识
DOI:10.1016/j.jcis.2022.02.069
摘要
The ternary transition metal oxides are promising anode material for lithium-ion batteries (LIBs). However, their practical applications are greatly hindered by the poor conductivity and huge volume changes. To solve the issues, urchin-like inverse spinel manganese (Mn) doped NiCo2O4 hierarchical microspheres were fabricated through a facile hydrothermal approach and subsequent annealing treatment. The as-obtained Mn-doped NiCo2O4 hold microsphere and sharp fiber-shaped needle multilevel nanoscale architecture, which effectively shortened Li ions (Li+) transmission path and improved the conductivity. In addition, the hierarchical urchin-like Mn-doped NiCo2O4 synthesized at annealing temperature (600 °C) manifested a larger capacity and better cycling performance by controlling the crystallinities and morphologies. As expected, it displays an outstanding cycling performance with a reversible capacity of about 945 mAh g-1 after 500 cycles at 2000 mA g-1. The kinetic analysis and galvanostatic intermittent titration technique (GITT) testing also verifies the superior pseudocapacitance contribution and fast elevated ion migration of Li+. Our work provides a promising design to develop suitable anode materials based on transition metal oxides for high-performance LIBs.
科研通智能强力驱动
Strongly Powered by AbleSci AI