Early identification of patients admitted to hospital for covid-19 at risk of clinical deterioration: model development and multisite external validation study

医学 机械通风 急诊医学 接收机工作特性 病历 预警得分 回顾性队列研究 队列 医疗急救 内科学
作者
Fahad Kamran,Shengpu Tang,Erkin Ötleş,Dustin McEvoy,Sameh N. Saleh,Jen J. Gong,Benjamin Y. Li,Sayon Dutta,Xinran Liu,Richard J Medford,Thomas S. Valley,Lauren R. West,Karandeep Singh,Seth Blumberg,John P. Donnelly,Erica S. Shenoy,John Z. Ayanian,Brahmajee K. Nallamothu,Michael W. Sjoding,Jenna Wiens
标识
DOI:10.1136/bmj-2021-068576
摘要

To create and validate a simple and transferable machine learning model from electronic health record data to accurately predict clinical deterioration in patients with covid-19 across institutions, through use of a novel paradigm for model development and code sharing.Retrospective cohort study.One US hospital during 2015-21 was used for model training and internal validation. External validation was conducted on patients admitted to hospital with covid-19 at 12 other US medical centers during 2020-21.33 119 adults (≥18 years) admitted to hospital with respiratory distress or covid-19.An ensemble of linear models was trained on the development cohort to predict a composite outcome of clinical deterioration within the first five days of hospital admission, defined as in-hospital mortality or any of three treatments indicating severe illness: mechanical ventilation, heated high flow nasal cannula, or intravenous vasopressors. The model was based on nine clinical and personal characteristic variables selected from 2686 variables available in the electronic health record. Internal and external validation performance was measured using the area under the receiver operating characteristic curve (AUROC) and the expected calibration error-the difference between predicted risk and actual risk. Potential bed day savings were estimated by calculating how many bed days hospitals could save per patient if low risk patients identified by the model were discharged early.9291 covid-19 related hospital admissions at 13 medical centers were used for model validation, of which 1510 (16.3%) were related to the primary outcome. When the model was applied to the internal validation cohort, it achieved an AUROC of 0.80 (95% confidence interval 0.77 to 0.84) and an expected calibration error of 0.01 (95% confidence interval 0.00 to 0.02). Performance was consistent when validated in the 12 external medical centers (AUROC range 0.77-0.84), across subgroups of sex, age, race, and ethnicity (AUROC range 0.78-0.84), and across quarters (AUROC range 0.73-0.83). Using the model to triage low risk patients could potentially save up to 7.8 bed days per patient resulting from early discharge.A model to predict clinical deterioration was developed rapidly in response to the covid-19 pandemic at a single hospital, was applied externally without the sharing of data, and performed well across multiple medical centers, patient subgroups, and time periods, showing its potential as a tool for use in optimizing healthcare resources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jamiter发布了新的文献求助30
1秒前
nanfang完成签到 ,获得积分10
2秒前
华仔应助jin1233采纳,获得10
3秒前
研友_LmVqmn完成签到,获得积分10
3秒前
4秒前
4秒前
Lucia发布了新的文献求助10
4秒前
852应助嗯哼采纳,获得10
4秒前
Mz完成签到,获得积分10
5秒前
今后应助幽篁采纳,获得30
6秒前
6秒前
Cyrus2022完成签到,获得积分10
8秒前
8秒前
winni完成签到,获得积分10
9秒前
Grinder发布了新的文献求助10
9秒前
甜滋滋发布了新的文献求助10
10秒前
文档发布了新的文献求助10
10秒前
wuhu完成签到,获得积分20
10秒前
11秒前
天天快乐应助淡定小蜜蜂采纳,获得10
11秒前
oydent完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
Helio完成签到,获得积分20
12秒前
13秒前
13秒前
Yichao发布了新的文献求助10
13秒前
zhuo完成签到,获得积分10
14秒前
Clara应助lhl采纳,获得10
14秒前
爪爪完成签到,获得积分10
15秒前
幸运星完成签到 ,获得积分10
15秒前
李健的小迷弟应助文档采纳,获得10
16秒前
NanNan626完成签到 ,获得积分10
16秒前
16秒前
轻松紫雪发布了新的文献求助10
17秒前
17秒前
大模型应助秋收冬藏采纳,获得10
17秒前
徐丫丫发布了新的文献求助10
17秒前
17秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160145
求助须知:如何正确求助?哪些是违规求助? 2811106
关于积分的说明 7891067
捐赠科研通 2470194
什么是DOI,文献DOI怎么找? 1315360
科研通“疑难数据库(出版商)”最低求助积分说明 630822
版权声明 602022