Learning based cost optimal energy management model for campus microgrid systems

微电网 可再生能源 能源管理 能源消耗 计算机科学 能源管理系统 可靠性工程 功率(物理) 发电 能量(信号处理) 电源管理 模拟
作者
Jangkyum Kim,Hyeontaek Oh,Jun Kyun Choi
出处
期刊:Applied Energy [Elsevier]
卷期号:311: 118630-118630
标识
DOI:10.1016/j.apenergy.2022.118630
摘要

The introduction of microgrids has enabled an efficient energy management in the system with installation of renewable energy sources. As one of the representative models of microgrid, various studies on campus microgrids (CMGs) have been conducted. In operation of CMG, various energy consumption resources and renewable energy are considered to minimize overall cost or peak power in the system. However, most of conventional researches only deal with performance analysis in terms of simulation by collecting data from the different environments. In this case, there are lack of consideration in power regulation or electricity cost which make it difficult to apply the researched energy operation technology to the actual power system. To solve the problem, this paper build a test-bed in an actual CMG environment and collect dataset through the various IoT sensors. In addition, uncertainties that occur through the various power resources are analyzed and used to derive net energy consumption scenarios. In this way, we propose a new cost optimal energy management model with the detailed analysis of power generation and consumption using various auxiliary IoT devices. Based on the real-world datasets from the implemented CMG, we show that the proposed analytical models and energy management model are feasible for actual environments. With satisfying the constraints, we show that the daily electricity cost could be reduced up to 2.16% and peak power is reduced up to 3% compared to the case without considering the uncertainties in CMG. • Propose analytical models suitable for campus microgrid components. • Proposed methods considering characteristics of the components and uncertainties. • Propose a new energy management model to minimize the total monetary costs. • Show the feasibility of the proposed model with constraints in a real-world system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助顺利涵菡采纳,获得10
1秒前
JamesPei应助yzqtf采纳,获得10
2秒前
雪驰完成签到,获得积分10
2秒前
认真的一刀完成签到,获得积分10
2秒前
thirteen完成签到 ,获得积分10
3秒前
无敌小车完成签到,获得积分10
3秒前
柒柒完成签到,获得积分10
3秒前
937989656发布了新的文献求助10
3秒前
3秒前
4秒前
zxt完成签到,获得积分10
4秒前
ZeradesY完成签到,获得积分10
4秒前
4秒前
积极冷霜完成签到,获得积分10
5秒前
贪玩香烟完成签到,获得积分20
5秒前
KONG完成签到,获得积分10
5秒前
6秒前
longmad完成签到,获得积分10
6秒前
谨慎天空完成签到 ,获得积分10
6秒前
大卡司完成签到,获得积分10
6秒前
共享精神应助灯灯采纳,获得10
6秒前
小小发布了新的文献求助10
7秒前
满三江完成签到,获得积分10
7秒前
棠梨煎雪完成签到,获得积分10
7秒前
查查完成签到 ,获得积分10
7秒前
勺子爱西瓜完成签到,获得积分10
7秒前
8秒前
hulin_zjxu发布了新的文献求助10
9秒前
cc123完成签到,获得积分10
9秒前
9秒前
99giddens给饭神仙鱼的求助进行了留言
9秒前
画舫完成签到,获得积分10
9秒前
hh发布了新的文献求助10
10秒前
wmm完成签到,获得积分10
10秒前
爱科研完成签到,获得积分10
11秒前
lllll完成签到,获得积分10
11秒前
棠梨煎雪发布了新的文献求助10
11秒前
12秒前
顺利涵菡完成签到,获得积分10
12秒前
黎黎完成签到,获得积分10
12秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142925
求助须知:如何正确求助?哪些是违规求助? 2793876
关于积分的说明 7808440
捐赠科研通 2450196
什么是DOI,文献DOI怎么找? 1303702
科研通“疑难数据库(出版商)”最低求助积分说明 627041
版权声明 601356