Learning based cost optimal energy management model for campus microgrid systems

微电网 可再生能源 能源管理 能源消耗 计算机科学 能源管理系统 可靠性工程 功率(物理) 发电 能量(信号处理) 电源管理 模拟
作者
Jangkyum Kim,Hyeontaek Oh,Jun Kyun Choi
出处
期刊:Applied Energy [Elsevier]
卷期号:311: 118630-118630
标识
DOI:10.1016/j.apenergy.2022.118630
摘要

The introduction of microgrids has enabled an efficient energy management in the system with installation of renewable energy sources. As one of the representative models of microgrid, various studies on campus microgrids (CMGs) have been conducted. In operation of CMG, various energy consumption resources and renewable energy are considered to minimize overall cost or peak power in the system. However, most of conventional researches only deal with performance analysis in terms of simulation by collecting data from the different environments. In this case, there are lack of consideration in power regulation or electricity cost which make it difficult to apply the researched energy operation technology to the actual power system. To solve the problem, this paper build a test-bed in an actual CMG environment and collect dataset through the various IoT sensors. In addition, uncertainties that occur through the various power resources are analyzed and used to derive net energy consumption scenarios. In this way, we propose a new cost optimal energy management model with the detailed analysis of power generation and consumption using various auxiliary IoT devices. Based on the real-world datasets from the implemented CMG, we show that the proposed analytical models and energy management model are feasible for actual environments. With satisfying the constraints, we show that the daily electricity cost could be reduced up to 2.16% and peak power is reduced up to 3% compared to the case without considering the uncertainties in CMG. • Propose analytical models suitable for campus microgrid components. • Proposed methods considering characteristics of the components and uncertainties. • Propose a new energy management model to minimize the total monetary costs. • Show the feasibility of the proposed model with constraints in a real-world system.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
后知不觉发布了新的文献求助10
1秒前
1秒前
嘿嘿嘿关注了科研通微信公众号
2秒前
2秒前
科目三应助一切顺利元元采纳,获得10
3秒前
4秒前
liu336371完成签到,获得积分10
4秒前
5秒前
是我呀吼完成签到,获得积分10
5秒前
6秒前
tree驳回了一一应助
6秒前
俊逸若之发布了新的文献求助10
7秒前
务实莫言完成签到,获得积分10
7秒前
小满发布了新的文献求助10
8秒前
行行行完成签到 ,获得积分10
8秒前
8秒前
9秒前
9秒前
10秒前
golf完成签到,获得积分10
10秒前
腼腆的缘分完成签到,获得积分10
10秒前
小石头完成签到,获得积分10
10秒前
10秒前
万能图书馆应助俊逸若之采纳,获得10
11秒前
11秒前
shishuang发布了新的文献求助10
12秒前
科研通AI6应助大胆的平蓝采纳,获得10
12秒前
小蘑菇应助Magical采纳,获得10
12秒前
GJ发布了新的文献求助10
12秒前
12秒前
科研通AI6应助好名字采纳,获得10
13秒前
科研通AI6应助动听书文采纳,获得10
13秒前
lucky发布了新的文献求助10
14秒前
离子键发布了新的文献求助10
14秒前
liz发布了新的文献求助10
14秒前
strongfrog发布了新的文献求助10
14秒前
15秒前
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608315
求助须知:如何正确求助?哪些是违规求助? 4692918
关于积分的说明 14876115
捐赠科研通 4717325
什么是DOI,文献DOI怎么找? 2544189
邀请新用户注册赠送积分活动 1509187
关于科研通互助平台的介绍 1472836