The design of porous structure in wearable sensors is very important for the detection of mechanical signals. However, it remains challenging to construct a porous structure capable of detecting all kinds of mechanical signals. Here, round wire with long-range orientated micropores (RW-LOM) is fabricated by a newly established freeze printing technique and constructed into a wearable sensor by the incorporation of carbon nanotubes and polydimethylsiloxane. The Sabal leaf-like lamellar structure in RW-LOM is realized and can be tuned by the proper coordination of slurry concentration and the printing parameters. The fine structures in RW-LOM allow the wearable sensor to detect compression, stretching, twisting, and bending with a high sensitivity, stability, and broad detecting range. This work not only provides a wearable sensor with high stability and high sensitivity but also establishes a technique to construct porous wires that could find applications in the fields like intelligent industry and healthcare.