Image Inpainting With Local and Global Refinement

修补 计算机科学 编码器 人工智能 感受野 深度学习 领域(数学) 计算机视觉 填写 像素 过程(计算) 图像(数学) 模式识别(心理学) 数学 纯数学 操作系统
作者
Weize Quan,Ruisong Zhang,Yong Zhang,Zhifeng Li,Jue Wang,Dong‐Ming Yan
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 2405-2420 被引量:84
标识
DOI:10.1109/tip.2022.3152624
摘要

Image inpainting has made remarkable progress with recent advances in deep learning. Popular networks mainly follow an encoder-decoder architecture (sometimes with skip connections) and possess sufficiently large receptive field, i.e., larger than the image resolution. The receptive field refers to the set of input pixels that are path-connected to a neuron. For image inpainting task, however, the size of surrounding areas needed to repair different kinds of missing regions are different, and the very large receptive field is not always optimal, especially for the local structures and textures. In addition, a large receptive field tends to involve more undesired completion results, which will disturb the inpainting process. Based on these insights, we rethink the process of image inpainting from a different perspective of receptive field, and propose a novel three-stage inpainting framework with local and global refinement. Specifically, we first utilize an encoder-decoder network with skip connection to achieve coarse initial results. Then, we introduce a shallow deep model with small receptive field to conduct the local refinement, which can also weaken the influence of distant undesired completion results. Finally, we propose an attention-based encoder-decoder network with large receptive field to conduct the global refinement. Experimental results demonstrate that our method outperforms the state of the arts on three popular publicly available datasets for image inpainting. Our local and global refinement network can be directly inserted into the end of any existing networks to further improve their inpainting performance. Code is available at https://github.com/weizequan/LGNet.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助顺式作用元件采纳,获得10
刚刚
所所应助奋斗的友儿采纳,获得10
2秒前
wei发布了新的文献求助10
3秒前
ding应助勤奋的毒娘采纳,获得10
3秒前
世佳何完成签到,获得积分10
4秒前
yxq完成签到,获得积分20
4秒前
冷静访梦完成签到,获得积分10
4秒前
meng完成签到,获得积分10
4秒前
tilly完成签到 ,获得积分10
6秒前
大火炉完成签到,获得积分10
8秒前
8秒前
深情安青应助Chem34采纳,获得10
10秒前
桐桐应助晓晓采纳,获得10
10秒前
12秒前
12秒前
库里晚安发布了新的文献求助10
13秒前
希望天下0贩的0应助ttyj采纳,获得10
14秒前
慕青应助ZXC采纳,获得10
14秒前
15秒前
鹿见林发布了新的文献求助10
17秒前
18秒前
19秒前
20秒前
20秒前
22222发布了新的文献求助30
21秒前
21秒前
TTTnz完成签到,获得积分20
23秒前
23秒前
鹿见林发布了新的文献求助10
24秒前
26秒前
ttyj发布了新的文献求助10
26秒前
27秒前
30秒前
30秒前
31秒前
赘婿应助独特的易形采纳,获得10
31秒前
ttyj完成签到,获得积分20
33秒前
TTTnz发布了新的文献求助10
35秒前
36秒前
狮子发布了新的文献求助10
36秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1250
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
APA educational psychology handbook, Vol 1: Theories, constructs, and critical issues 700
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3651941
求助须知:如何正确求助?哪些是违规求助? 3216150
关于积分的说明 9710764
捐赠科研通 2923893
什么是DOI,文献DOI怎么找? 1601432
邀请新用户注册赠送积分活动 754152
科研通“疑难数据库(出版商)”最低求助积分说明 732977