膜
压实
材料科学
薄膜复合膜
复合数
聚酰胺
复合材料
膜结构
化学工程
反渗透
化学
生物化学
工程类
作者
Yali Zhao,Gwo Sung Lai,Jeng Yi Chong,Rong Wang
标识
DOI:10.1016/j.memsci.2022.120553
摘要
Thin film composite (TFC) polyamide (PA) membranes experience compaction at high pressure applications, resulting in the reduction in water permeability. However, the compaction mechanism is still unclear especially for different PA morphologies and substrate structures. In this work, we systematically studied the compaction of TFC PA membranes with different structures and morphologies. We first examined 2 main types of commercial reverse osmosis (RO) membranes: brackish water RO and seawater RO membranes. After that, we synthesised four types of TFC membranes with tailored PA and substrate structures to further understand the compaction behaviors. TFC membrane with a PA layer of low protuberances or nodules and dense substrate showed excellent resistance against high pressure (50 bar), with only a slight irreversible decrease of 2.1–3.5% in water permeability when retested at 5 bar. However, the PA layer of high protuberances experienced significant compaction even when it was supported by a similar dense substrate. The permeability of the TFC membrane decreased ∼10% as a result of the decrease in the effective area of the active layer. On the other hand, the TFC membrane with a PA layer of low protuberances formed atop a loose substrate showed a greater decrease (∼18.5%) in water permeability. The densified skin layer and collapsed macro-voids within the loose substrate resulted in a ∼40% decrease in the overall height of the PA layer and a 65% decline in substrate surface porosity, respectively, which are identified as the reasons for the reducing water permeability. Notably, the water-salt selectivity of this particular membrane was seriously deteriorated after compaction due to the presence of subtle defects in the PA layer caused by the drastic deformation of the loose substrate. This work deepens the understanding of the compaction behaviors of TFC PA membranes, providing a clear fundamental guidance on designing membranes applied at high operating pressures. • The compaction of TFC PA membranes with different PA and substrate structures at 50-bar hydraulic pressure was investigated. • The high protuberances on the PA layer were compressed at 50 bar, resulting in an apparent decline in water permeability. • A porous substrate resulted in the decreases of water permeability and selectivity simultaneously after membrane compaction. • A TFC membrane with a low-protuberance PA layer and dense substrate is suitable for use in high-pressure processes.
科研通智能强力驱动
Strongly Powered by AbleSci AI