Dissecting the structure-compaction-performance relationship of thin-film composite polyamide membranes with different structure features

压实 材料科学 薄膜复合膜 复合数 聚酰胺 复合材料 膜结构 化学工程 反渗透 化学 生物化学 工程类
作者
Yali Zhao,Gwo Sung Lai,Jeng Yi Chong,Rong Wang
出处
期刊:Journal of Membrane Science [Elsevier]
卷期号:654: 120553-120553 被引量:22
标识
DOI:10.1016/j.memsci.2022.120553
摘要

Thin film composite (TFC) polyamide (PA) membranes experience compaction at high pressure applications, resulting in the reduction in water permeability. However, the compaction mechanism is still unclear especially for different PA morphologies and substrate structures. In this work, we systematically studied the compaction of TFC PA membranes with different structures and morphologies. We first examined 2 main types of commercial reverse osmosis (RO) membranes: brackish water RO and seawater RO membranes. After that, we synthesised four types of TFC membranes with tailored PA and substrate structures to further understand the compaction behaviors. TFC membrane with a PA layer of low protuberances or nodules and dense substrate showed excellent resistance against high pressure (50 bar), with only a slight irreversible decrease of 2.1–3.5% in water permeability when retested at 5 bar. However, the PA layer of high protuberances experienced significant compaction even when it was supported by a similar dense substrate. The permeability of the TFC membrane decreased ∼10% as a result of the decrease in the effective area of the active layer. On the other hand, the TFC membrane with a PA layer of low protuberances formed atop a loose substrate showed a greater decrease (∼18.5%) in water permeability. The densified skin layer and collapsed macro-voids within the loose substrate resulted in a ∼40% decrease in the overall height of the PA layer and a 65% decline in substrate surface porosity, respectively, which are identified as the reasons for the reducing water permeability. Notably, the water-salt selectivity of this particular membrane was seriously deteriorated after compaction due to the presence of subtle defects in the PA layer caused by the drastic deformation of the loose substrate. This work deepens the understanding of the compaction behaviors of TFC PA membranes, providing a clear fundamental guidance on designing membranes applied at high operating pressures. • The compaction of TFC PA membranes with different PA and substrate structures at 50-bar hydraulic pressure was investigated. • The high protuberances on the PA layer were compressed at 50 bar, resulting in an apparent decline in water permeability. • A porous substrate resulted in the decreases of water permeability and selectivity simultaneously after membrane compaction. • A TFC membrane with a low-protuberance PA layer and dense substrate is suitable for use in high-pressure processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开放的玉米完成签到,获得积分10
1秒前
肥肥完成签到 ,获得积分10
2秒前
Lyw完成签到 ,获得积分10
2秒前
毛毛弟发布了新的文献求助10
2秒前
3秒前
小欧文完成签到,获得积分10
4秒前
1111111111应助kkkdachui采纳,获得10
5秒前
山山以川发布了新的文献求助10
5秒前
dagongren完成签到,获得积分10
5秒前
晓先森完成签到,获得积分10
7秒前
ny完成签到,获得积分10
8秒前
8秒前
juqiu发布了新的文献求助10
8秒前
彭于晏应助方方采纳,获得10
9秒前
科研通AI6应助多情紫霜采纳,获得10
9秒前
9秒前
10秒前
10秒前
所所应助雪花采纳,获得10
11秒前
Hello应助花花采纳,获得10
11秒前
cc完成签到,获得积分20
11秒前
12秒前
刘佳慧发布了新的文献求助10
12秒前
科研小陈完成签到,获得积分10
13秒前
pups发布了新的文献求助20
14秒前
JUNJUN发布了新的文献求助30
14秒前
麻辣炒年糕完成签到 ,获得积分10
14秒前
Lucas应助wang采纳,获得30
14秒前
14秒前
李健的小迷弟应助W昂采纳,获得10
16秒前
16秒前
酷波er应助cloud采纳,获得10
17秒前
缥缈的凝丹完成签到,获得积分10
17秒前
牛牛完成签到 ,获得积分10
18秒前
鹏程苏完成签到 ,获得积分10
18秒前
Matrix完成签到,获得积分10
18秒前
Maestro_S发布了新的文献求助10
19秒前
多情紫霜完成签到,获得积分10
19秒前
19秒前
cc关注了科研通微信公众号
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5284055
求助须知:如何正确求助?哪些是违规求助? 4437688
关于积分的说明 13814537
捐赠科研通 4318612
什么是DOI,文献DOI怎么找? 2370475
邀请新用户注册赠送积分活动 1365895
关于科研通互助平台的介绍 1329363