Dissecting the structure-compaction-performance relationship of thin-film composite polyamide membranes with different structure features

压实 材料科学 薄膜复合膜 复合数 聚酰胺 复合材料 膜结构 化学工程 反渗透 化学 生物化学 工程类
作者
Yali Zhao,Gwo Sung Lai,Jeng Yi Chong,Rong Wang
出处
期刊:Journal of Membrane Science [Elsevier]
卷期号:654: 120553-120553 被引量:22
标识
DOI:10.1016/j.memsci.2022.120553
摘要

Thin film composite (TFC) polyamide (PA) membranes experience compaction at high pressure applications, resulting in the reduction in water permeability. However, the compaction mechanism is still unclear especially for different PA morphologies and substrate structures. In this work, we systematically studied the compaction of TFC PA membranes with different structures and morphologies. We first examined 2 main types of commercial reverse osmosis (RO) membranes: brackish water RO and seawater RO membranes. After that, we synthesised four types of TFC membranes with tailored PA and substrate structures to further understand the compaction behaviors. TFC membrane with a PA layer of low protuberances or nodules and dense substrate showed excellent resistance against high pressure (50 bar), with only a slight irreversible decrease of 2.1–3.5% in water permeability when retested at 5 bar. However, the PA layer of high protuberances experienced significant compaction even when it was supported by a similar dense substrate. The permeability of the TFC membrane decreased ∼10% as a result of the decrease in the effective area of the active layer. On the other hand, the TFC membrane with a PA layer of low protuberances formed atop a loose substrate showed a greater decrease (∼18.5%) in water permeability. The densified skin layer and collapsed macro-voids within the loose substrate resulted in a ∼40% decrease in the overall height of the PA layer and a 65% decline in substrate surface porosity, respectively, which are identified as the reasons for the reducing water permeability. Notably, the water-salt selectivity of this particular membrane was seriously deteriorated after compaction due to the presence of subtle defects in the PA layer caused by the drastic deformation of the loose substrate. This work deepens the understanding of the compaction behaviors of TFC PA membranes, providing a clear fundamental guidance on designing membranes applied at high operating pressures. • The compaction of TFC PA membranes with different PA and substrate structures at 50-bar hydraulic pressure was investigated. • The high protuberances on the PA layer were compressed at 50 bar, resulting in an apparent decline in water permeability. • A porous substrate resulted in the decreases of water permeability and selectivity simultaneously after membrane compaction. • A TFC membrane with a low-protuberance PA layer and dense substrate is suitable for use in high-pressure processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助赖道之采纳,获得10
刚刚
2秒前
研友_LXdbaL发布了新的文献求助30
2秒前
思源应助单薄新烟采纳,获得10
3秒前
3秒前
4秒前
Zz完成签到,获得积分10
4秒前
Prandtl完成签到 ,获得积分10
6秒前
7秒前
zfzf0422完成签到 ,获得积分10
8秒前
上官若男应助jackie采纳,获得10
8秒前
8秒前
我是站长才怪应助Benliu采纳,获得20
9秒前
9秒前
zh20130完成签到,获得积分10
9秒前
9秒前
TT发布了新的文献求助10
10秒前
Star1983发布了新的文献求助10
10秒前
研友_LXdbaL完成签到,获得积分10
11秒前
12秒前
在水一方应助66采纳,获得10
13秒前
13秒前
13秒前
缘一发布了新的文献求助10
14秒前
junzilan发布了新的文献求助10
15秒前
CipherSage应助赖道之采纳,获得10
16秒前
ccc完成签到,获得积分10
16秒前
16秒前
16秒前
19秒前
Pauline完成签到,获得积分10
21秒前
jackie发布了新的文献求助10
21秒前
笨笨摇伽发布了新的文献求助10
23秒前
科目三应助皓月繁星采纳,获得10
23秒前
tomato完成签到,获得积分20
25秒前
CodeCraft应助缘一采纳,获得10
26秒前
小二郎应助刘铭晨采纳,获得10
26秒前
26秒前
大个应助风雨1210采纳,获得10
26秒前
一壶清酒完成签到,获得积分10
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808