Prediction of Fluorophore Brightness in Designed Mini Fluorescence Activating Proteins

发色团 荧光团 亮度 激发态 能源景观 折叠(DSP实现) 分子动力学 化学物理 基态 荧光 化学 蛋白质折叠 合理设计 蛋白质设计 蛋白质结构 生物系统 材料科学 物理 纳米技术 计算化学 光化学 原子物理学 光学 生物 工程类 电气工程 生物化学
作者
Emma R. Hostetter,Jeffrey R. Keyes,Ivy Poon,Justin P. Nguyen,Jacob Nite,NULL AUTHOR_ID,Carlos A. Jiménez Hoyos,Colin A. Smith
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
卷期号:18 (5): 3190-3203
标识
DOI:10.1021/acs.jctc.1c00748
摘要

The de novo computational design of proteins with predefined three-dimensional structure is becoming much more routine due to advancements both in force fields and algorithms. However, creating designs with functions beyond folding is more challenging. In that regard, the recent design of small beta barrel proteins that activate the fluorescence of an exogenous small molecule chromophore (DFHBI) is noteworthy. These proteins, termed mini fluorescence activating proteins (mFAPs), have been shown to increase the brightness of the chromophore more than 100-fold upon binding to the designed ligand pocket. The design process created a large library of variants with different brightness levels but gave no rational explanation for why one variant was brighter than another. Here, we use quantum mechanics and molecular dynamics simulations to investigate how molecular flexibility in the ground and excited states influences brightness. We show that the ability of the protein to resist dihedral angle rotation of the chromophore is critical for predicting brightness. Our simulations suggest that the mFAP/DFHBI complex has a rough energy landscape, requiring extensive ground-state sampling to achieve converged predictions of excited-state kinetics. While computationally demanding, this roughness suggests that mFAP protein function can be enhanced by reshaping the energy landscape toward conformations that better resist DFHBI bond rotation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助tttp采纳,获得10
2秒前
4秒前
4秒前
yxl要顺利毕业_发6篇C完成签到,获得积分10
6秒前
林结衣完成签到,获得积分10
7秒前
完美世界应助热情大树采纳,获得10
8秒前
yyy完成签到 ,获得积分10
8秒前
9秒前
lmg发布了新的文献求助10
9秒前
SYLH应助cc采纳,获得10
9秒前
梦想完成签到,获得积分20
10秒前
10秒前
qq158014169完成签到 ,获得积分10
10秒前
10秒前
深情安青应助DamenS采纳,获得10
10秒前
我是老大应助DamenS采纳,获得10
11秒前
Ava应助DamenS采纳,获得10
11秒前
orixero应助DamenS采纳,获得10
11秒前
思源应助DamenS采纳,获得10
11秒前
fan完成签到,获得积分10
12秒前
打打应助小杨采纳,获得10
12秒前
zokor完成签到 ,获得积分0
13秒前
九龙飞翔完成签到,获得积分10
14秒前
yookia应助koukou采纳,获得10
14秒前
14秒前
lh发布了新的文献求助10
16秒前
阳光的雁易完成签到,获得积分10
17秒前
研友_VZG7GZ应助DamenS采纳,获得10
18秒前
CodeCraft应助DamenS采纳,获得10
18秒前
万能图书馆应助DamenS采纳,获得10
18秒前
慕青应助DamenS采纳,获得10
18秒前
顾矜应助DamenS采纳,获得10
18秒前
慕青应助DamenS采纳,获得10
18秒前
脑洞疼应助DamenS采纳,获得10
18秒前
Jasper应助DamenS采纳,获得10
18秒前
共享精神应助DamenS采纳,获得10
18秒前
wanci应助DamenS采纳,获得10
18秒前
GGGG发布了新的文献求助20
19秒前
20秒前
共享精神应助Baihanyu采纳,获得10
20秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954299
求助须知:如何正确求助?哪些是违规求助? 3500338
关于积分的说明 11099026
捐赠科研通 3230828
什么是DOI,文献DOI怎么找? 1786171
邀请新用户注册赠送积分活动 869840
科研通“疑难数据库(出版商)”最低求助积分说明 801651