Attention-Based Multimodal Image Feature Fusion Module for Transmission Line Detection

块(置换群论) 人工智能 计算机科学 特征(语言学) 特征提取 计算机视觉 杂乱 模式识别(心理学) 目标检测 传输(电信) 支持向量机 雷达 数学 电信 哲学 语言学 几何学
作者
Hyeyeon Choi,Jong Pil Yun,Bum Jun Kim,Hyeonah Jang,Sang Woo Kim
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:18 (11): 7686-7695 被引量:38
标识
DOI:10.1109/tii.2022.3147833
摘要

Transmission line (TL) inspection is important for ensuring a stable supply of electricity to rural areas. Currently, there are several TL detection approaches based on computer vision; however, they have limitations owing to background clutter in visible light images. This article presents a novel multimodal image feature fusion module that utilizes both visible light and infrared images to enhance the TL-detection performance. The proposed module consists of a multibranch feature extraction (MFE) block followed by a channelwise attention (CA) block. The first block extracts the representative features of each modal input using multiple branches. The outputs of the MFE block are jointly aggregated into an attention vector in the CA block. Finally, the attention vector recalibrates each input feature of the proposed module. To reduce the number of additional parameters due to the insertion of the module, we introduced a channel-shrink factor in the MFE block and utilized a $1\times {1}$ convolution in the CA block. Comparison experiments with various augmented conditions of day, night, fog, and snow were conducted on a real-world dataset, which we constructed by visible light and infrared images. The results showed that the proposed module outperformed not only the case of single modal input but also the state-of-the-art fusion methods, regardless of the baseline networks. Additionally, the proposed module showed effectiveness in terms of capacity when the baseline network has a large number of weight parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浪而而完成签到,获得积分10
刚刚
SHUANG发布了新的文献求助10
刚刚
淡然的含卉应助一期一会采纳,获得10
刚刚
1秒前
飞翔的荷兰人完成签到,获得积分10
1秒前
1秒前
Ail完成签到,获得积分10
1秒前
卢卢发布了新的文献求助10
2秒前
顾矜应助wergou采纳,获得10
2秒前
2秒前
123456发布了新的文献求助10
2秒前
谢谢李发布了新的文献求助10
3秒前
3秒前
3秒前
咩咩应助vocrious采纳,获得10
4秒前
4秒前
4秒前
5秒前
煦暖应助科研通管家采纳,获得10
5秒前
5秒前
SciGPT应助科研通管家采纳,获得10
5秒前
天天快乐应助科研通管家采纳,获得10
5秒前
樱栀发布了新的文献求助10
6秒前
6秒前
Orange应助科研通管家采纳,获得10
6秒前
完美世界应助科研通管家采纳,获得10
6秒前
6秒前
彭于晏应助科研通管家采纳,获得10
6秒前
山河发布了新的文献求助10
6秒前
共享精神应助科研通管家采纳,获得10
7秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
Orange应助科研通管家采纳,获得10
7秒前
彭于晏应助科研通管家采纳,获得10
7秒前
华仔应助科研通管家采纳,获得10
7秒前
CipherSage应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
桐桐应助科研通管家采纳,获得10
8秒前
SciGPT应助科研通管家采纳,获得10
8秒前
汉堡包应助一个可爱的人采纳,获得10
8秒前
科研通AI5应助球球采纳,获得10
8秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646