Attention-Based Multimodal Image Feature Fusion Module for Transmission Line Detection

块(置换群论) 人工智能 计算机科学 特征(语言学) 特征提取 计算机视觉 杂乱 模式识别(心理学) 目标检测 传输(电信) 支持向量机 雷达 数学 电信 哲学 语言学 几何学
作者
Hyeyeon Choi,Jong Pil Yun,Bum Jun Kim,Hyeonah Jang,Sang Woo Kim
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:18 (11): 7686-7695 被引量:47
标识
DOI:10.1109/tii.2022.3147833
摘要

Transmission line (TL) inspection is important for ensuring a stable supply of electricity to rural areas. Currently, there are several TL detection approaches based on computer vision; however, they have limitations owing to background clutter in visible light images. This article presents a novel multimodal image feature fusion module that utilizes both visible light and infrared images to enhance the TL-detection performance. The proposed module consists of a multibranch feature extraction (MFE) block followed by a channelwise attention (CA) block. The first block extracts the representative features of each modal input using multiple branches. The outputs of the MFE block are jointly aggregated into an attention vector in the CA block. Finally, the attention vector recalibrates each input feature of the proposed module. To reduce the number of additional parameters due to the insertion of the module, we introduced a channel-shrink factor in the MFE block and utilized a $1\times {1}$ convolution in the CA block. Comparison experiments with various augmented conditions of day, night, fog, and snow were conducted on a real-world dataset, which we constructed by visible light and infrared images. The results showed that the proposed module outperformed not only the case of single modal input but also the state-of-the-art fusion methods, regardless of the baseline networks. Additionally, the proposed module showed effectiveness in terms of capacity when the baseline network has a large number of weight parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
深情安青应助zhangxiaoji采纳,获得10
1秒前
2秒前
yufangwu发布了新的文献求助10
2秒前
叶子发布了新的文献求助10
3秒前
3秒前
GAOBIN000发布了新的文献求助10
3秒前
lyh发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
文曲星本星发布了新的文献求助100
5秒前
文文发布了新的文献求助10
7秒前
疯狂女博士完成签到,获得积分10
7秒前
LI发布了新的文献求助10
7秒前
许1发布了新的文献求助30
7秒前
传奇3应助熬碗小米粥采纳,获得10
7秒前
8秒前
yufangwu完成签到,获得积分20
8秒前
dogontree发布了新的文献求助10
9秒前
香蕉觅云应助孙朱珠采纳,获得10
9秒前
9秒前
菌皆发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
tamaco发布了新的文献求助10
11秒前
CodeCraft应助fafa采纳,获得10
11秒前
GGKing发布了新的文献求助10
12秒前
瑶瑶酱完成签到,获得积分10
12秒前
赘婿应助longjiafang采纳,获得10
12秒前
12秒前
飞0802发布了新的文献求助10
12秒前
13秒前
13秒前
monly应助科研通管家采纳,获得10
13秒前
NexusExplorer应助科研通管家采纳,获得10
13秒前
monly应助科研通管家采纳,获得10
13秒前
天天快乐应助科研通管家采纳,获得10
13秒前
NexusExplorer应助科研通管家采纳,获得10
13秒前
李爱国应助科研通管家采纳,获得10
13秒前
天天快乐应助科研通管家采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728534
求助须知:如何正确求助?哪些是违规求助? 5313250
关于积分的说明 15314452
捐赠科研通 4875726
什么是DOI,文献DOI怎么找? 2618947
邀请新用户注册赠送积分活动 1568530
关于科研通互助平台的介绍 1525171