Attention-Based Multimodal Image Feature Fusion Module for Transmission Line Detection

块(置换群论) 人工智能 计算机科学 特征(语言学) 特征提取 计算机视觉 杂乱 模式识别(心理学) 目标检测 传输(电信) 支持向量机 雷达 数学 电信 哲学 语言学 几何学
作者
Hyeyeon Choi,Jong Pil Yun,Bum Jun Kim,Hyeonah Jang,Sang Woo Kim
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:18 (11): 7686-7695 被引量:47
标识
DOI:10.1109/tii.2022.3147833
摘要

Transmission line (TL) inspection is important for ensuring a stable supply of electricity to rural areas. Currently, there are several TL detection approaches based on computer vision; however, they have limitations owing to background clutter in visible light images. This article presents a novel multimodal image feature fusion module that utilizes both visible light and infrared images to enhance the TL-detection performance. The proposed module consists of a multibranch feature extraction (MFE) block followed by a channelwise attention (CA) block. The first block extracts the representative features of each modal input using multiple branches. The outputs of the MFE block are jointly aggregated into an attention vector in the CA block. Finally, the attention vector recalibrates each input feature of the proposed module. To reduce the number of additional parameters due to the insertion of the module, we introduced a channel-shrink factor in the MFE block and utilized a $1\times {1}$ convolution in the CA block. Comparison experiments with various augmented conditions of day, night, fog, and snow were conducted on a real-world dataset, which we constructed by visible light and infrared images. The results showed that the proposed module outperformed not only the case of single modal input but also the state-of-the-art fusion methods, regardless of the baseline networks. Additionally, the proposed module showed effectiveness in terms of capacity when the baseline network has a large number of weight parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助cencen采纳,获得10
刚刚
Nomb1发布了新的文献求助10
1秒前
今后应助学术大佬阿呆采纳,获得10
1秒前
Crescent发布了新的文献求助10
3秒前
李子完成签到,获得积分10
3秒前
酷波er应助唐唐采纳,获得10
3秒前
4秒前
脑洞疼应助Nomb1采纳,获得10
5秒前
万能图书馆应助九儿采纳,获得10
5秒前
6秒前
左丘秋尽完成签到,获得积分10
7秒前
__发布了新的文献求助10
7秒前
小白发布了新的文献求助10
8秒前
子车茗应助科研菜鸟采纳,获得10
8秒前
10秒前
Lucas应助陈晨采纳,获得10
11秒前
董小白发布了新的文献求助10
12秒前
rrraymond完成签到,获得积分10
13秒前
Thi发布了新的文献求助10
13秒前
苗元槐完成签到 ,获得积分10
13秒前
小北发布了新的文献求助10
14秒前
沉默的玩偶完成签到,获得积分10
15秒前
17秒前
19秒前
22秒前
向暖发布了新的文献求助10
22秒前
23秒前
苏苏苏发布了新的文献求助10
23秒前
昏睡的妙梦完成签到,获得积分10
24秒前
等乙天发布了新的文献求助10
24秒前
Seven完成签到,获得积分10
24秒前
25秒前
万能图书馆应助WTQ采纳,获得10
26秒前
cervantes发布了新的文献求助10
26秒前
yiersan发布了新的文献求助10
28秒前
科研菜鸟完成签到,获得积分10
28秒前
打打应助karstbing采纳,获得30
29秒前
斯文败类应助度ewf采纳,获得10
31秒前
水滴发布了新的文献求助20
31秒前
陈晨发布了新的文献求助10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563404
求助须知:如何正确求助?哪些是违规求助? 4648237
关于积分的说明 14684240
捐赠科研通 4590274
什么是DOI,文献DOI怎么找? 2518398
邀请新用户注册赠送积分活动 1491088
关于科研通互助平台的介绍 1462369