Attention-Based Multimodal Image Feature Fusion Module for Transmission Line Detection

块(置换群论) 人工智能 计算机科学 特征(语言学) 特征提取 计算机视觉 杂乱 模式识别(心理学) 目标检测 传输(电信) 支持向量机 雷达 数学 电信 哲学 语言学 几何学
作者
Hyeyeon Choi,Jong Pil Yun,Bum Jun Kim,Hyeonah Jang,Sang Woo Kim
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:18 (11): 7686-7695 被引量:47
标识
DOI:10.1109/tii.2022.3147833
摘要

Transmission line (TL) inspection is important for ensuring a stable supply of electricity to rural areas. Currently, there are several TL detection approaches based on computer vision; however, they have limitations owing to background clutter in visible light images. This article presents a novel multimodal image feature fusion module that utilizes both visible light and infrared images to enhance the TL-detection performance. The proposed module consists of a multibranch feature extraction (MFE) block followed by a channelwise attention (CA) block. The first block extracts the representative features of each modal input using multiple branches. The outputs of the MFE block are jointly aggregated into an attention vector in the CA block. Finally, the attention vector recalibrates each input feature of the proposed module. To reduce the number of additional parameters due to the insertion of the module, we introduced a channel-shrink factor in the MFE block and utilized a $1\times {1}$ convolution in the CA block. Comparison experiments with various augmented conditions of day, night, fog, and snow were conducted on a real-world dataset, which we constructed by visible light and infrared images. The results showed that the proposed module outperformed not only the case of single modal input but also the state-of-the-art fusion methods, regardless of the baseline networks. Additionally, the proposed module showed effectiveness in terms of capacity when the baseline network has a large number of weight parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Fazie完成签到 ,获得积分10
1秒前
CAT完成签到,获得积分20
1秒前
何佳臻完成签到,获得积分10
3秒前
3秒前
思源应助huangshoukun采纳,获得10
3秒前
4秒前
宵宫完成签到,获得积分10
5秒前
万能图书馆应助CAT采纳,获得10
5秒前
如初发布了新的文献求助10
6秒前
舒服的水壶完成签到,获得积分10
7秒前
大模型应助科研通管家采纳,获得10
8秒前
9秒前
9秒前
Jasper应助科研通管家采纳,获得10
9秒前
乐乐应助科研通管家采纳,获得10
9秒前
酷波er应助科研通管家采纳,获得10
9秒前
无花果应助科研通管家采纳,获得10
9秒前
tuanheqi应助科研通管家采纳,获得150
10秒前
彭于晏应助科研通管家采纳,获得10
10秒前
JamesPei应助科研通管家采纳,获得10
10秒前
赘婿应助科研通管家采纳,获得20
10秒前
10秒前
乐乐应助科研通管家采纳,获得10
10秒前
Criminology34应助科研通管家采纳,获得10
10秒前
10秒前
tuanheqi应助科研通管家采纳,获得150
10秒前
10秒前
斯文败类应助彪壮的百合采纳,获得10
11秒前
13秒前
平淡傲南发布了新的文献求助10
14秒前
fxxk应助xiuxiuzhang采纳,获得10
15秒前
16秒前
Lizhui完成签到,获得积分10
16秒前
17秒前
小马甲应助调皮火龙果采纳,获得10
18秒前
寒酥完成签到,获得积分10
18秒前
11111发布了新的文献求助10
20秒前
丘比特应助任性的秋凌采纳,获得10
21秒前
Wenyilong发布了新的文献求助10
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5172005
求助须知:如何正确求助?哪些是违规求助? 4362325
关于积分的说明 13583256
捐赠科研通 4210110
什么是DOI,文献DOI怎么找? 2309114
邀请新用户注册赠送积分活动 1308341
关于科研通互助平台的介绍 1255324