Attention-Based Multimodal Image Feature Fusion Module for Transmission Line Detection

块(置换群论) 人工智能 计算机科学 特征(语言学) 特征提取 计算机视觉 杂乱 模式识别(心理学) 目标检测 传输(电信) 支持向量机 雷达 数学 电信 哲学 语言学 几何学
作者
Hyeyeon Choi,Jong Pil Yun,Bum Jun Kim,Hyeonah Jang,Sang Woo Kim
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:18 (11): 7686-7695 被引量:47
标识
DOI:10.1109/tii.2022.3147833
摘要

Transmission line (TL) inspection is important for ensuring a stable supply of electricity to rural areas. Currently, there are several TL detection approaches based on computer vision; however, they have limitations owing to background clutter in visible light images. This article presents a novel multimodal image feature fusion module that utilizes both visible light and infrared images to enhance the TL-detection performance. The proposed module consists of a multibranch feature extraction (MFE) block followed by a channelwise attention (CA) block. The first block extracts the representative features of each modal input using multiple branches. The outputs of the MFE block are jointly aggregated into an attention vector in the CA block. Finally, the attention vector recalibrates each input feature of the proposed module. To reduce the number of additional parameters due to the insertion of the module, we introduced a channel-shrink factor in the MFE block and utilized a $1\times {1}$ convolution in the CA block. Comparison experiments with various augmented conditions of day, night, fog, and snow were conducted on a real-world dataset, which we constructed by visible light and infrared images. The results showed that the proposed module outperformed not only the case of single modal input but also the state-of-the-art fusion methods, regardless of the baseline networks. Additionally, the proposed module showed effectiveness in terms of capacity when the baseline network has a large number of weight parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助科研通管家采纳,获得10
刚刚
奋斗平卉发布了新的文献求助10
刚刚
刚刚
李健应助科研通管家采纳,获得10
刚刚
wanci应助科研通管家采纳,获得10
刚刚
小蘑菇发布了新的文献求助10
刚刚
JamesPei应助科研通管家采纳,获得10
1秒前
薯片发布了新的文献求助10
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
彭于晏应助科研通管家采纳,获得10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
哇咔咔应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
闫奥辉完成签到,获得积分10
1秒前
way完成签到,获得积分10
1秒前
李健应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
科目三应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI6应助贾硕士采纳,获得10
1秒前
浮游应助王阳洋采纳,获得10
1秒前
CipherSage应助等待的慕梅采纳,获得10
2秒前
沙拉酱发布了新的文献求助10
2秒前
3秒前
斯文败类应助jiangxuexue采纳,获得10
3秒前
3秒前
想摆摊卖烤鱿鱼完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
baolongzhan完成签到,获得积分10
6秒前
轮椅发布了新的文献求助10
6秒前
大渣饼完成签到 ,获得积分10
6秒前
科研小狗完成签到,获得积分10
6秒前
科研通AI2S应助奋斗平卉采纳,获得10
6秒前
吴晓燕完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629869
求助须知:如何正确求助?哪些是违规求助? 4720921
关于积分的说明 14971132
捐赠科研通 4787826
什么是DOI,文献DOI怎么找? 2556570
邀请新用户注册赠送积分活动 1517709
关于科研通互助平台的介绍 1478285