人工智能
计算机科学
模式识别(心理学)
高光谱成像
像素
图形
卷积神经网络
预处理器
特征提取
分割
理论计算机科学
作者
Hongyan Zhang,Jiaqi Zou,Liangpei Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing
[Institute of Electrical and Electronics Engineers]
日期:2022-01-01
卷期号:60: 1-16
被引量:33
标识
DOI:10.1109/tgrs.2022.3163326
摘要
The lack of labels is one of the major challenges in hyperspectral image (HSI) classification. Widely used Deep Learning (DL) models such as convolutional neural networks (CNNs) experience serious performance degradation when training samples are limited. In contrast, graph convolutional networks (GCNs) can simultaneously exploit the insufficient labeled data and massive unlabeled data of HSI in a semisupervised learning fashion. However, in order to reduce computational cost and mitigate noise, existing GCN-based classification methods usually perform superpixel segmentation as a preprocessing step and implement feature extraction as well as node classification on the predefined superpixel graph, where one superpixel might incorporate pixels with different labels. Moreover, the local spectral–spatial information within superpixels is generally ignored. To alleviate these two issues, we propose an end-to-end mixhop superpixel-based GCN (EMS-GCN) framework for HSI classification. Specifically, we first introduce the differentiable superpixel segmentation algorithm to map the pixel representations into a superpixel feature space, which allows refining the superpixel boundary with the training of the network. After that, a superpixel graph is constructed and fed into a novel mixhop superpixel-based GCN, where both the local information within superpixels and long-range information among superpixels are extracted, while the structure of the superpixel graph is updated at the same time. Finally, the enhanced superpixel representations are mapped back into a pixel feature space to conduct pixel-wise classification. Extensive experiments demonstrate the effectiveness of the proposed EMS-GCN method compared with other state-of-the-art methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI