EMS-GCN: An End-to-End Mixhop Superpixel-Based Graph Convolutional Network for Hyperspectral Image Classification

人工智能 计算机科学 模式识别(心理学) 高光谱成像 像素 图形 卷积神经网络 预处理器 特征提取 分割 理论计算机科学
作者
Hongyan Zhang,Jiaqi Zou,Liangpei Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-16 被引量:33
标识
DOI:10.1109/tgrs.2022.3163326
摘要

The lack of labels is one of the major challenges in hyperspectral image (HSI) classification. Widely used Deep Learning (DL) models such as convolutional neural networks (CNNs) experience serious performance degradation when training samples are limited. In contrast, graph convolutional networks (GCNs) can simultaneously exploit the insufficient labeled data and massive unlabeled data of HSI in a semisupervised learning fashion. However, in order to reduce computational cost and mitigate noise, existing GCN-based classification methods usually perform superpixel segmentation as a preprocessing step and implement feature extraction as well as node classification on the predefined superpixel graph, where one superpixel might incorporate pixels with different labels. Moreover, the local spectral–spatial information within superpixels is generally ignored. To alleviate these two issues, we propose an end-to-end mixhop superpixel-based GCN (EMS-GCN) framework for HSI classification. Specifically, we first introduce the differentiable superpixel segmentation algorithm to map the pixel representations into a superpixel feature space, which allows refining the superpixel boundary with the training of the network. After that, a superpixel graph is constructed and fed into a novel mixhop superpixel-based GCN, where both the local information within superpixels and long-range information among superpixels are extracted, while the structure of the superpixel graph is updated at the same time. Finally, the enhanced superpixel representations are mapped back into a pixel feature space to conduct pixel-wise classification. Extensive experiments demonstrate the effectiveness of the proposed EMS-GCN method compared with other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
皮鲂完成签到 ,获得积分10
6秒前
伶俐的雁蓉完成签到,获得积分10
7秒前
Lucky发布了新的文献求助10
8秒前
沉默天德完成签到,获得积分10
8秒前
科研通AI2S应助柔弱的千秋采纳,获得10
9秒前
巧克力大王完成签到 ,获得积分10
9秒前
隐形曼青应助乐观生活采纳,获得10
11秒前
筷子吃不了面完成签到,获得积分10
11秒前
诚心不凡完成签到,获得积分20
11秒前
CC完成签到 ,获得积分10
12秒前
12秒前
李健应助Sk采纳,获得10
12秒前
阔达白筠完成签到,获得积分10
13秒前
atcha完成签到 ,获得积分10
14秒前
rosalieshi应助狂奔的蜗牛采纳,获得30
14秒前
慕青应助jioujg采纳,获得10
15秒前
Owen应助无限的谷丝采纳,获得10
15秒前
15秒前
思源应助隐形的代梅采纳,获得10
16秒前
16秒前
小马甲应助Lucky采纳,获得10
19秒前
orixero应助qgyj采纳,获得10
20秒前
oceanao应助owlhealth采纳,获得10
21秒前
红姐完成签到,获得积分20
24秒前
老六完成签到,获得积分10
24秒前
CCC完成签到 ,获得积分10
25秒前
可爱的函函应助风yiya采纳,获得10
25秒前
清秀LL完成签到 ,获得积分10
25秒前
Fiona完成签到,获得积分10
31秒前
35秒前
红姐关注了科研通微信公众号
38秒前
42秒前
华仔应助搬砖美少女采纳,获得10
43秒前
意义发布了新的文献求助30
43秒前
48秒前
科研通AI2S应助Maarten4采纳,获得10
49秒前
酷波er应助嘻嘻采纳,获得10
50秒前
51秒前
53秒前
清爽文博完成签到,获得积分20
59秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164253
求助须知:如何正确求助?哪些是违规求助? 2814985
关于积分的说明 7907327
捐赠科研通 2474608
什么是DOI,文献DOI怎么找? 1317573
科研通“疑难数据库(出版商)”最低求助积分说明 631857
版权声明 602228