EMS-GCN: An End-to-End Mixhop Superpixel-Based Graph Convolutional Network for Hyperspectral Image Classification

人工智能 计算机科学 模式识别(心理学) 高光谱成像 像素 图形 卷积神经网络 预处理器 特征提取 分割 理论计算机科学
作者
Hongyan Zhang,Jiaqi Zou,Liangpei Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-16 被引量:43
标识
DOI:10.1109/tgrs.2022.3163326
摘要

The lack of labels is one of the major challenges in hyperspectral image (HSI) classification. Widely used Deep Learning (DL) models such as convolutional neural networks (CNNs) experience serious performance degradation when training samples are limited. In contrast, graph convolutional networks (GCNs) can simultaneously exploit the insufficient labeled data and massive unlabeled data of HSI in a semisupervised learning fashion. However, in order to reduce computational cost and mitigate noise, existing GCN-based classification methods usually perform superpixel segmentation as a preprocessing step and implement feature extraction as well as node classification on the predefined superpixel graph, where one superpixel might incorporate pixels with different labels. Moreover, the local spectral–spatial information within superpixels is generally ignored. To alleviate these two issues, we propose an end-to-end mixhop superpixel-based GCN (EMS-GCN) framework for HSI classification. Specifically, we first introduce the differentiable superpixel segmentation algorithm to map the pixel representations into a superpixel feature space, which allows refining the superpixel boundary with the training of the network. After that, a superpixel graph is constructed and fed into a novel mixhop superpixel-based GCN, where both the local information within superpixels and long-range information among superpixels are extracted, while the structure of the superpixel graph is updated at the same time. Finally, the enhanced superpixel representations are mapped back into a pixel feature space to conduct pixel-wise classification. Extensive experiments demonstrate the effectiveness of the proposed EMS-GCN method compared with other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
4秒前
wisdom完成签到,获得积分10
4秒前
slayers发布了新的文献求助30
7秒前
8秒前
e746700020完成签到,获得积分10
9秒前
高兴尔冬完成签到,获得积分10
9秒前
李爱国应助不安的秋白采纳,获得10
11秒前
忧伤的步美完成签到,获得积分10
16秒前
小西完成签到 ,获得积分10
17秒前
郝老头完成签到,获得积分10
18秒前
13313完成签到,获得积分10
19秒前
su完成签到 ,获得积分10
20秒前
23秒前
28秒前
量子星尘发布了新的文献求助10
28秒前
slayers完成签到 ,获得积分10
28秒前
30秒前
知犯何逆完成签到,获得积分10
32秒前
Krsky完成签到,获得积分10
34秒前
ding应助不安的秋白采纳,获得10
35秒前
36秒前
38秒前
HHHAN发布了新的文献求助10
42秒前
威武的沂完成签到,获得积分10
47秒前
49秒前
50秒前
52秒前
笨笨青筠完成签到 ,获得积分10
55秒前
mengmenglv完成签到 ,获得积分0
55秒前
Tonald Yang完成签到 ,获得积分20
58秒前
59秒前
落后的怀梦完成签到 ,获得积分10
1分钟前
陈坤完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
斯文败类应助zgx采纳,获得10
1分钟前
默默完成签到 ,获得积分10
1分钟前
KY Mr.WANG完成签到,获得积分10
1分钟前
1分钟前
guoxingliu完成签到,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038039
求助须知:如何正确求助?哪些是违规求助? 3575756
关于积分的说明 11373782
捐赠科研通 3305574
什么是DOI,文献DOI怎么找? 1819239
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022