EMS-GCN: An End-to-End Mixhop Superpixel-Based Graph Convolutional Network for Hyperspectral Image Classification

人工智能 计算机科学 模式识别(心理学) 高光谱成像 像素 图形 卷积神经网络 预处理器 特征提取 分割 理论计算机科学
作者
Hongyan Zhang,Jiaqi Zou,Liangpei Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-16 被引量:33
标识
DOI:10.1109/tgrs.2022.3163326
摘要

The lack of labels is one of the major challenges in hyperspectral image (HSI) classification. Widely used Deep Learning (DL) models such as convolutional neural networks (CNNs) experience serious performance degradation when training samples are limited. In contrast, graph convolutional networks (GCNs) can simultaneously exploit the insufficient labeled data and massive unlabeled data of HSI in a semisupervised learning fashion. However, in order to reduce computational cost and mitigate noise, existing GCN-based classification methods usually perform superpixel segmentation as a preprocessing step and implement feature extraction as well as node classification on the predefined superpixel graph, where one superpixel might incorporate pixels with different labels. Moreover, the local spectral–spatial information within superpixels is generally ignored. To alleviate these two issues, we propose an end-to-end mixhop superpixel-based GCN (EMS-GCN) framework for HSI classification. Specifically, we first introduce the differentiable superpixel segmentation algorithm to map the pixel representations into a superpixel feature space, which allows refining the superpixel boundary with the training of the network. After that, a superpixel graph is constructed and fed into a novel mixhop superpixel-based GCN, where both the local information within superpixels and long-range information among superpixels are extracted, while the structure of the superpixel graph is updated at the same time. Finally, the enhanced superpixel representations are mapped back into a pixel feature space to conduct pixel-wise classification. Extensive experiments demonstrate the effectiveness of the proposed EMS-GCN method compared with other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SweepingMonk应助EthanChan采纳,获得10
刚刚
爆米花应助二豆子0采纳,获得10
1秒前
科研通AI5应助Mian采纳,获得10
1秒前
CodeCraft应助酒九采纳,获得10
1秒前
星辰大海应助不喝可乐采纳,获得10
1秒前
1秒前
2秒前
WJ发布了新的文献求助10
2秒前
JamesPei应助落寞的紫山采纳,获得10
2秒前
平常的不平完成签到,获得积分10
3秒前
系统提示发布了新的文献求助10
3秒前
盛yyyy完成签到,获得积分10
3秒前
合适山河发布了新的文献求助10
4秒前
周星星完成签到 ,获得积分10
4秒前
NexusExplorer应助潦草采纳,获得10
4秒前
ZHEN发布了新的文献求助10
5秒前
艺玲发布了新的文献求助10
6秒前
dddddddio完成签到 ,获得积分10
6秒前
6秒前
gaos发布了新的文献求助10
6秒前
坦率的可仁完成签到,获得积分10
7秒前
司徒迎曼完成签到,获得积分10
7秒前
烟花应助激情的一斩采纳,获得10
7秒前
天天快乐应助11采纳,获得10
8秒前
36456657应助八九采纳,获得50
8秒前
潦草完成签到,获得积分20
8秒前
华仔应助科研通管家采纳,获得10
8秒前
freesialll完成签到 ,获得积分10
8秒前
深情安青应助科研通管家采纳,获得30
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
大模型应助科研通管家采纳,获得10
9秒前
彭于晏应助科研通管家采纳,获得20
9秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
摇摇晃晃完成签到 ,获得积分10
9秒前
9秒前
乐乐应助科研通管家采纳,获得10
9秒前
贪玩手链应助科研通管家采纳,获得20
9秒前
科研通AI5应助科研通管家采纳,获得30
9秒前
CipherSage应助科研通管家采纳,获得10
9秒前
共享精神应助科研通管家采纳,获得10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740