质粒
水平基因转移
细菌
大肠杆菌
生物物理学
pUC19型
转化(遗传学)
化学
微生物学
生物
DNA
基因
遗传学
基因组
作者
Xiaojie Hu,Michael Gatheru Waigi,Bing Yang,Yanzheng Gao
标识
DOI:10.1021/acs.est.2c00745
摘要
Plastic particles impact the propagation of antibiotic resistance genes (ARGs) in environmental media, and their perturbation on the horizontal gene transfer (HGT) of ARGs is recognized as a critical influencing mechanism. However, studies concerning the influence and influencing mechanisms of plastic particles on the HGT of ARGs were limited, particularly for the effect of particle sizes and ARG vector-associated mechanisms. This study explored the impact of polystyrene (PS) particles with sizes of 75, 90, 100, 1000, and 10000 nm on the HGT (via transformation) of ARGs mediated by pUC19, pSTV29, and pBR322 plasmids into Escherichia coli cells. PS particles with sizes ≤100 nm impacted the transformation of ARGs, but large particles (1000 and 10000 nm) showed no obvious effects. Effects of PS particles on the transfer of three plasmids were vastly distinct. For pUC19 with high replication capacities, the transfer was monotonously promoted. However, for pSTV29 and pBR322 with low replication capacities, suppressing effects were observed. This was attributed to two competing mechanisms. The enhancing mechanism was that the direct interaction of PS particles with membrane lipids and the indirect effect associated with bacterial oxidative stress response induced pore formation on the cell membrane and increased membrane permeability, thus enhancing plasmid entrance. The inhibiting mechanism was that PS particles interfered with plasmid replication inside E. coli, thus decreasing the bacterial tranformation. This study deepened our understanding of the environmental dissemination of ARGs in plastic contamination.
科研通智能强力驱动
Strongly Powered by AbleSci AI