Quantum-inspired classical algorithm for molecular vibronic spectra

振动光谱学 高斯分布 玻色子 统计物理学 量子 谱线 采样(信号处理) 傅里叶变换 量子力学 物理 算法 化学 计算机科学 光学 探测器
作者
Changhun Oh,Youngrong Lim,Yat Choy Wong,Bill Fefferman,Liang Jiang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2202.01861
摘要

We have recently seen the first plausible claims for quantum advantage using sampling problems such as random circuit sampling and Gaussian boson sampling. The obvious next step is to channel the potential quantum advantage to solving practical applications rather than proof-of-principle experiments. Recently, a quantum simulator, specifically a Gaussian boson sampler, has been proposed to generate molecular vibronic spectra efficiently, which is an essential property of molecules and an important tool for analyzing chemical components and studying molecular structures. Computing molecular vibronic spectra has been a challenging task, and its best-known classical algorithm scales combinatorially in the system size. Thus, it is a candidate of tasks for which quantum devices provide computational advantages. In this work, we propose a quantum-inspired classical algorithm for molecular vibronic spectra for harmonic potential. We first show that the molecular vibronic spectra problem corresponding to Fock-state boson sampling can be efficiently solved using a classical algorithm as accurately as running a boson sampler. In particular, we generalize Gurvits's algorithm to approximate Fourier components of the spectra of Fock-state boson sampling and prove using Parseval's relation that the error of the spectra can be suppressed as long as that of the Fourier components are small. We also show that the molecular vibronic spectra problems of Gaussian boson sampling, which corresponds to the actual molecular vibronic spectra problem in chemistry, can be exactly solved even without Gurvits-type algorithms. Consequently, we demonstrate that those problems are not candidates of quantum advantage. We then provide a more general molecular vibronic spectra problem, which is also chemically well-motivated, for which we might be able to take advantage of a boson sampler.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
漂亮寻云发布了新的文献求助10
1秒前
李小伟发布了新的文献求助10
1秒前
笨笨善若发布了新的文献求助10
3秒前
桐桐应助劳永杰采纳,获得10
3秒前
6秒前
jane发布了新的文献求助10
6秒前
周林花完成签到,获得积分20
7秒前
Hello应助斯文采纳,获得10
8秒前
沐风发布了新的文献求助10
8秒前
9秒前
夏惋清完成签到 ,获得积分0
11秒前
万能图书馆应助亦风采纳,获得10
11秒前
Orange应助GGBAO采纳,获得10
12秒前
DirectorO发布了新的文献求助30
13秒前
Orange应助jane采纳,获得10
14秒前
CodeCraft应助在我梦里绕采纳,获得10
15秒前
joye完成签到,获得积分10
16秒前
ljx完成签到,获得积分10
17秒前
17秒前
亦风完成签到,获得积分10
18秒前
FashionBoy应助高大的蜡烛采纳,获得10
19秒前
Noob_saibot发布了新的文献求助10
19秒前
亦风发布了新的文献求助10
20秒前
22秒前
熊有鹏完成签到,获得积分20
25秒前
27秒前
汉堡包应助幸福冰珍采纳,获得30
28秒前
28秒前
28秒前
华仔应助科研通管家采纳,获得10
29秒前
所所应助科研通管家采纳,获得10
29秒前
我是老大应助科研通管家采纳,获得10
30秒前
十三应助科研通管家采纳,获得10
30秒前
爆米花应助科研通管家采纳,获得10
30秒前
乐乐应助科研通管家采纳,获得10
30秒前
科研通AI2S应助科研通管家采纳,获得10
30秒前
慕青应助科研通管家采纳,获得10
30秒前
所所应助科研通管家采纳,获得10
30秒前
充电宝应助科研通管家采纳,获得10
31秒前
深情安青应助kgy采纳,获得10
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967974
求助须知:如何正确求助?哪些是违规求助? 3513037
关于积分的说明 11166022
捐赠科研通 3248121
什么是DOI,文献DOI怎么找? 1794108
邀请新用户注册赠送积分活动 874854
科研通“疑难数据库(出版商)”最低求助积分说明 804602