Quantum-inspired classical algorithm for molecular vibronic spectra

振动光谱学 高斯分布 玻色子 统计物理学 量子 谱线 采样(信号处理) 傅里叶变换 量子力学 物理 算法 化学 计算机科学 光学 探测器
作者
Changhun Oh,Youngrong Lim,Yat Choy Wong,Bill Fefferman,Liang Jiang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2202.01861
摘要

We have recently seen the first plausible claims for quantum advantage using sampling problems such as random circuit sampling and Gaussian boson sampling. The obvious next step is to channel the potential quantum advantage to solving practical applications rather than proof-of-principle experiments. Recently, a quantum simulator, specifically a Gaussian boson sampler, has been proposed to generate molecular vibronic spectra efficiently, which is an essential property of molecules and an important tool for analyzing chemical components and studying molecular structures. Computing molecular vibronic spectra has been a challenging task, and its best-known classical algorithm scales combinatorially in the system size. Thus, it is a candidate of tasks for which quantum devices provide computational advantages. In this work, we propose a quantum-inspired classical algorithm for molecular vibronic spectra for harmonic potential. We first show that the molecular vibronic spectra problem corresponding to Fock-state boson sampling can be efficiently solved using a classical algorithm as accurately as running a boson sampler. In particular, we generalize Gurvits's algorithm to approximate Fourier components of the spectra of Fock-state boson sampling and prove using Parseval's relation that the error of the spectra can be suppressed as long as that of the Fourier components are small. We also show that the molecular vibronic spectra problems of Gaussian boson sampling, which corresponds to the actual molecular vibronic spectra problem in chemistry, can be exactly solved even without Gurvits-type algorithms. Consequently, we demonstrate that those problems are not candidates of quantum advantage. We then provide a more general molecular vibronic spectra problem, which is also chemically well-motivated, for which we might be able to take advantage of a boson sampler.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明亮的小蘑菇完成签到 ,获得积分10
刚刚
hongxing liu完成签到,获得积分10
刚刚
刚刚
科研通AI6.1应助语安采纳,获得10
刚刚
刚刚
刚刚
YifanWang应助shinn采纳,获得10
1秒前
2秒前
生科牲完成签到,获得积分10
2秒前
2秒前
园园发布了新的文献求助10
4秒前
bastien发布了新的文献求助10
4秒前
苏小慧发布了新的文献求助10
4秒前
搜集达人应助瑞指导采纳,获得10
4秒前
5秒前
李健应助Ren采纳,获得10
5秒前
共享精神应助lyh采纳,获得10
6秒前
YEYE发布了新的文献求助10
7秒前
qikkk应助十六夜彦采纳,获得10
7秒前
龙湾飞机场完成签到,获得积分10
7秒前
8秒前
8秒前
努力毕业发布了新的文献求助10
8秒前
8秒前
CodeCraft应助Mzb采纳,获得10
10秒前
李迪完成签到,获得积分10
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
香蕉觅云应助语安采纳,获得10
11秒前
liuyunhao7207发布了新的文献求助10
11秒前
多啦2642完成签到,获得积分10
12秒前
辣辣发布了新的文献求助10
12秒前
12秒前
万能图书馆应助lllsssyyy采纳,获得30
13秒前
YifanWang应助shinn采纳,获得10
13秒前
默默白桃完成签到 ,获得积分10
14秒前
mlty00完成签到,获得积分10
14秒前
14秒前
YEYE完成签到,获得积分10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5783916
求助须知:如何正确求助?哪些是违规求助? 5679757
关于积分的说明 15462629
捐赠科研通 4913287
什么是DOI,文献DOI怎么找? 2644568
邀请新用户注册赠送积分活动 1592378
关于科研通互助平台的介绍 1547002