计算机科学
水准点(测量)
序列(生物学)
人工智能
树(集合论)
任务(项目管理)
解码方法
词汇
一致性(知识库)
序列标记
编码(内存)
多标签分类
树形结构
自然语言处理
机器学习
算法
二叉树
数学
地理
哲学
管理
经济
数学分析
生物
遗传学
语言学
大地测量学
作者
Chao Yu,Yi Shen,Yue Mao,Longjun Cai
标识
DOI:10.1145/3477495.3531765
摘要
Hierarchical Text Classification (HTC) is a challenging task where a document can be assigned to multiple hierarchically structured categories within a taxonomy. The majority of prior studies consider HTC as a flat multi-label classification problem, which inevitably leads to "label inconsistency" problem. In this paper, we formulate HTC as a sequence generation task and introduce a sequence-to-tree framework (Seq2Tree) for modeling the hierarchical label structure. Moreover, we design a constrained decoding strategy with dynamic vocabulary to secure the label consistency of the results. Compared with previous works, the proposed approach achieves significant and consistent improvements on three benchmark datasets.
科研通智能强力驱动
Strongly Powered by AbleSci AI