A Dual-modal Imaging Method Combining Ultrasound and Electromagnetism for Simultaneous Measurement of Tissue Elasticity and Electrical Conductivity.

成像体模 弹性(物理) 生物医学工程 医学影像学 传感器 声学 情态动词 电导率 材料科学 电阻率和电导率 超声波 软组织 光学 物理
作者
Haoming Lin,Yi Chen,Siyuan Xie,Mengmeng Yu,Dingqian Deng,Tong Sun,Yuyang Hu,Mian Chen,Siping Chen,Xin Chen
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:PP
标识
DOI:10.1109/tbme.2022.3148120
摘要

The mechanical and electrical properties of soft tissues are relative to soft tissues' pathological state. Modern medical imaging devices have shown a trend to multi-modal imaging, which will provide complementary functional information to improve the accuracy of disease diagnosis. However, no method or system can simultaneously measure the mechanical and electrical properties of the soft tissue. In this study, we proposed a novel dual-modal imaging method integrated by shear wave elasticity imaging (SWEI) and Magneto-acousto-electrical tomography (MAET) to measure soft tissue's elasticity and conductivity simultaneously. A dual-modal imaging system based on a linear array transducer is built, and the imaging performances of MAET and SWEI were respectively evaluated by phantoms experiment and \textit{in vitro} experiment. Conductivity phantom experiments show that the MAET in this dual-modal system can image conductivity gradient as low as 0.4 S/m. The phantom experiments show that the reconstructed 2-D elasticity maps of the phantoms with inclusions with a diameter larger than 5 mm are relatively accurate. \textit{In vitro} experiments show that the elasticity parameter can significantly distinguish the changes in tissue before and after heating. This study first proposes a method that can simultaneously obtain tissue elasticity and electrical conductivity to the best of our knowledge. Although this paper just carried out the proof of concept experiments of the new method, it demonstrates great potential for disease diagnosis in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
李健应助陶醉觅夏采纳,获得10
2秒前
2秒前
独特凡松完成签到,获得积分10
2秒前
木笔朱瑾完成签到 ,获得积分10
3秒前
Rinohalt完成签到,获得积分10
3秒前
4秒前
孙梁子完成签到,获得积分10
4秒前
核桃花生奶兔完成签到 ,获得积分10
5秒前
请叫我风吹麦浪应助HJJHJH采纳,获得10
6秒前
7秒前
孙奕发布了新的文献求助10
7秒前
xiaotian_fan完成签到,获得积分10
7秒前
9秒前
9秒前
科研通AI2S应助laochen采纳,获得10
9秒前
盘尼西林发布了新的文献求助10
9秒前
迟大猫应助专心搞学术采纳,获得10
10秒前
12秒前
孙奕完成签到,获得积分10
13秒前
13秒前
俟天晴完成签到,获得积分10
13秒前
淡定问芙发布了新的文献求助30
14秒前
16秒前
Lewis完成签到,获得积分10
17秒前
orixero应助TranYan采纳,获得10
17秒前
猪猪hero发布了新的文献求助10
19秒前
20秒前
今后应助333采纳,获得10
21秒前
pu发布了新的文献求助10
22秒前
Akim应助梓榆采纳,获得10
23秒前
劼大大完成签到,获得积分10
23秒前
最优解完成签到 ,获得积分20
24秒前
24秒前
通~发布了新的文献求助10
24秒前
一段乐多完成签到,获得积分10
25秒前
25秒前
25秒前
给我找完成签到,获得积分10
26秒前
桐桐应助Yuki0616采纳,获得10
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794