Learnable Multi-View Matrix Factorization With Graph Embedding and Flexible Loss

计算机科学 矩阵分解 嵌入 图形 因式分解 理论计算机科学 并行计算 人工智能 算法 量子力学 物理 特征向量
作者
Sheng Huang,Yunhe Zhang,Lele Fu,Shiping Wang
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:25: 3259-3272 被引量:18
标识
DOI:10.1109/tmm.2022.3157997
摘要

The goal of multi-view learning is to learn latent patterns from various data sources. Most of previous research focused on fitting feature embedding in target tasks. There is very limited research on the connection between feature representations with hidden layers of neural networks. In this paper, a multi-view deep matrix factorization model is proposed to learn a shared feature representation. The proposed model automatically explores the most discriminative features of multi-view data and makes these features meet the requirements of specific applications. Here we explore the connection between deep learning and feature representations. First, the model constructs a scalable neural network with shared hidden layers for exploring a low-dimensional representations of all views. Second, the quality of representation matrix is evaluated via relaxed graph regularization and evaluators to improve the feature representation capability of matrix factorization. Finally, the effectiveness of the proposed method is verified through comparative experiments with eight state-of-the-art multi-view clustering algorithms on eight real-world datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
2秒前
3秒前
3秒前
宇文一完成签到,获得积分10
3秒前
4秒前
yellow发布了新的文献求助10
4秒前
4秒前
zxhbyx完成签到,获得积分20
4秒前
喜悦冬易完成签到,获得积分10
5秒前
烟花应助青野采纳,获得10
5秒前
5秒前
JY发布了新的文献求助10
6秒前
科研顺利发布了新的文献求助10
6秒前
6秒前
唐晓秦发布了新的文献求助10
6秒前
7秒前
wzy完成签到,获得积分10
7秒前
7秒前
打打应助lin采纳,获得10
7秒前
赘婿应助古月采纳,获得10
7秒前
8秒前
pragmatic发布了新的文献求助10
8秒前
人间世关注了科研通微信公众号
8秒前
Owen应助科研通管家采纳,获得10
8秒前
无花果应助科研通管家采纳,获得10
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
8秒前
星辰大海应助科研通管家采纳,获得10
8秒前
SciGPT应助科研通管家采纳,获得10
9秒前
Lucas应助科研通管家采纳,获得30
9秒前
酷波er应助科研通管家采纳,获得10
9秒前
信仰发布了新的文献求助30
9秒前
深情安青应助科研通管家采纳,获得10
9秒前
小豆豆应助科研通管家采纳,获得30
9秒前
9秒前
9秒前
烟花应助科研通管家采纳,获得10
9秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979896
求助须知:如何正确求助?哪些是违规求助? 3523949
关于积分的说明 11219166
捐赠科研通 3261387
什么是DOI,文献DOI怎么找? 1800629
邀请新用户注册赠送积分活动 879209
科研通“疑难数据库(出版商)”最低求助积分说明 807202