A predictive model integrating deep and radiomics features based on gadobenate dimeglumine-enhanced MRI for postoperative early recurrence of hepatocellular carcinoma

医学 肝细胞癌 钆酸 无线电技术 逻辑回归 磁共振成像 放射科 回顾性队列研究 特征选择 内科学 人工智能 计算机科学 钆DTPA
作者
Wenyu Gao,Wentao Wang,Danjun Song,Chun Yang,Kai Zhu,Mengsu Zeng,Shengxiang Rao,Manning Wang
出处
期刊:Radiologia Medica [Springer Nature]
卷期号:127 (3): 259-271 被引量:40
标识
DOI:10.1007/s11547-021-01445-6
摘要

Hepatocellular carcinoma (HCC) is the most common liver cancer worldwide, and early recurrence of HCC after curative hepatic resection is indicative of poor prognoses. We aim to develop a predictive model for postoperative early recurrence of HCC based on deep and radiomics features from multi-phasic magnetic resonance imaging (MRI).A total of 472 HCC patients were included and divided into the training (n = 378) and validation (n = 94) cohorts in the retrospective study. We separately extracted radiomics features and deep features from eight phases of gadoxetic acid-enhanced MRI and utilized the least absolute shrinkage and selection operator logistic regression algorithm for feature selection and model construction. We integrated the selected two types of features into a combined model and established a radiomics model as well as a deep learning (DL) model for comparison.In the training and validation cohorts, the combined model demonstrated better performance for stratifying patients at high risk of early recurrence (AUC of 0.911 and 0.840, accuracy of 0.779 and 0.777, sensitivity of 0.927 and 0.769, specificity 0.720 and 0.779) than the radiomics model (AUC of 0.740 and 0.780) and the DL model (AUC of 0.887 and 0.813).The combined model integrating deep and radiomics features from multi-phasic MRI is efficient for noninvasively stratifying patients at high risk of early HCC recurrence after resection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡然完成签到,获得积分10
刚刚
明理小土豆完成签到,获得积分10
刚刚
刘国建郭菱香完成签到,获得积分10
刚刚
嘤嘤嘤完成签到,获得积分10
刚刚
九川应助粱自中采纳,获得10
刚刚
无辜之卉完成签到,获得积分10
1秒前
无花果应助Island采纳,获得10
1秒前
1秒前
SHDeathlock发布了新的文献求助200
2秒前
Owen应助醒醒采纳,获得10
2秒前
无心的代桃完成签到,获得积分10
3秒前
追寻代真完成签到,获得积分10
3秒前
晓兴兴完成签到,获得积分10
3秒前
leon发布了新的文献求助10
4秒前
洽洽瓜子shine完成签到,获得积分10
4秒前
简单的大白菜真实的钥匙完成签到,获得积分10
5秒前
6秒前
一独白完成签到,获得积分10
7秒前
在水一方应助坚强的樱采纳,获得10
7秒前
慕青应助尼亚吉拉采纳,获得10
8秒前
快乐小白菜应助甜酱采纳,获得10
8秒前
8秒前
qq应助毛慢慢采纳,获得10
9秒前
9秒前
科研通AI5应助吴岳采纳,获得10
9秒前
天天快乐应助ufuon采纳,获得10
10秒前
科研通AI5应助一独白采纳,获得10
11秒前
hearts_j完成签到,获得积分10
11秒前
FashionBoy应助yasan采纳,获得10
11秒前
安琪琪完成签到,获得积分10
12秒前
12秒前
端庄千琴完成签到,获得积分10
12秒前
gaogao完成签到,获得积分10
12秒前
菲菲公主完成签到,获得积分10
13秒前
13秒前
13秒前
英姑应助柒八染采纳,获得10
14秒前
退堂鼓发布了新的文献求助10
14秒前
党弛完成签到,获得积分10
14秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762