Prediction of acute versus chronic osteoporotic vertebral fracture using radiomics-clinical model on CT

医学 列线图 队列 接收机工作特性 逻辑回归 无线电技术 放射科 核医学 内科学
作者
Hui Yang,Sheng Yan,Jiang Li,Xiuzhu Zheng,Qianqian Yao,Shaofeng Duan,Zhu Jian-zhong,LI Chang-qin,Jian Qin
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:149: 110197-110197 被引量:10
标识
DOI:10.1016/j.ejrad.2022.110197
摘要

This paper aims to use radiomics-clinical analysis based on CT imaging to distinguish between acute and chronic osteoporotic vertebral fractures.A total of 147 patients who underwent both dual-energy X-ray absorptiometry (DEXA), CT and MRI of the spine were analyzed retrospectively. The patients were assigned to either a training cohort (n = 103) or a validation cohort (n = 44). The radiomics model and combined nomogram model were established by multivariate logistic regression analysis. The predictive performance was assessed with receiver operating characteristic (ROC) curve.Fourteen radiomic features based on spine CT images were constructed to distinguish acute versus chronic osteoporotic vertebral fractures, and its differentialperformance was good with an area under the curve (AUC) of 0.90 (95% CI, 0.84-0.95) in the training cohort and 0.82 (95% CI, 0.69-0.94) in the validation cohort. Based on the radiomic signature and clinical fracture line feature, a combined nomogram was developed and showed excellent differential ability with highest AUC of 0.93 (95 %CI,0.88-0.98) in the training cohort and 0.86 (95 %CI,0.73-0.98) in the validation cohort, which performed better than the clinical model significantly only.A quantitative nomogram based on clinical fracture line feature and radiomic features of CT images can be used to distinguish acute and chronic osteoporotic vertebral fractures with excellent predictive ability, which can be served as a potential decision support tool to assist clinicians in evaluating the phase of vertebral fractures timely, especially in situation where spine MRI was not available for patient.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
chen发布了新的文献求助10
2秒前
大个应助彦佳雪采纳,获得10
2秒前
Orange应助大慧慧采纳,获得10
3秒前
万能图书馆应助zqxu采纳,获得10
3秒前
快乐小恬完成签到 ,获得积分10
4秒前
5秒前
CCC应助保住头发为科研采纳,获得20
5秒前
8秒前
欧阳完成签到,获得积分10
9秒前
Carol_Wang完成签到,获得积分10
9秒前
xn发布了新的文献求助10
10秒前
Jun发布了新的文献求助10
11秒前
香蕉凌柏完成签到,获得积分10
11秒前
11秒前
大模型应助123456采纳,获得10
12秒前
12秒前
13秒前
称心的冥幽关注了科研通微信公众号
14秒前
14秒前
大壮完成签到,获得积分10
15秒前
rktrain2023发布了新的文献求助10
16秒前
传奇3应助研友_8y2G0L采纳,获得10
17秒前
18秒前
20秒前
20秒前
研友_V8Qmr8发布了新的文献求助10
21秒前
赘婿应助麻花辫女孩采纳,获得10
22秒前
十一嘞发布了新的文献求助10
22秒前
顾矜应助正直的惜文采纳,获得10
22秒前
23秒前
酷波er应助梦里格斗家采纳,获得10
25秒前
25秒前
27秒前
科研通AI2S应助duang采纳,获得10
27秒前
blk发布了新的文献求助10
28秒前
结实曼凡发布了新的文献求助30
28秒前
30秒前
33秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125620
求助须知:如何正确求助?哪些是违规求助? 2775921
关于积分的说明 7728309
捐赠科研通 2431379
什么是DOI,文献DOI怎么找? 1291979
科研通“疑难数据库(出版商)”最低求助积分说明 622295
版权声明 600376