Progress and perspectives of in-situ optical monitoring in laser beam welding: Sensing, characterization and modeling

过程(计算) 材料科学 焊接 灵活性(工程) 表征(材料科学) 计算机科学 在制品 机械工程 系统工程 纳米技术 工程类 运营管理 数学 统计 操作系统
作者
Di Wu,Peilei Zhang,Zhishui Yu,Yanfeng Gao,Hua Zhang,Huabin Chen,Shanben Chen,Yingtao Tian
出处
期刊:Journal of Manufacturing Processes [Elsevier]
卷期号:75: 767-791 被引量:57
标识
DOI:10.1016/j.jmapro.2022.01.044
摘要

Laser beam welding manufacturing (LBW), being a promising joining technology with superior capabilities of high-precision, good-flexibility and deep penetration, has attracted considerable attention over the academic and industry circles. To date, the lack of repeatability and stability are still regarded as the critical technological barrier that hinders its broader applications especially for high-value products with demanding requirements. One significant approach to overcome this formidable challenge is in-situ monitoring combined with artificial intelligence (AI) techniques, which has been explored by great research efforts. The main goal of monitoring is to gather essential information on the process and to improve the understanding of the occurring complicated weld phenomena. This review firstly describes ongoing work on the in-situ optical sensing, behavior characterization and process modeling during dynamic LBW process. Then, much emphasis has been placed on the optical radiation techniques, such as multi-spectral photodiode, spectrometer, pyrometer and high-speed camera for observing the laser physical phenomenon including melt pool, keyhole and vapor plume. In particular, the advanced image/signal processing techniques and machine-learning models are addressed, in order to identify the correlations between process parameters, process signatures and product qualities. Finally, the major challenges and potential solutions are discussed to provide an insight on what still needs to be achieved in the field of process monitoring for metal-based LBW processes. This comprehensive review is intended to provide a reference of the state-of-the-art for those seeking to introduce intelligent welding capabilities as they improve and control the welding quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
醉乀心发布了新的文献求助10
刚刚
1秒前
1秒前
阿牛奶发布了新的文献求助10
2秒前
王黎应助隐形映菱采纳,获得10
4秒前
4秒前
5秒前
暄暄完成签到 ,获得积分10
6秒前
黑去吗工发布了新的文献求助10
6秒前
诸怀曼发布了新的文献求助10
6秒前
失眠友灵完成签到,获得积分10
6秒前
汉堡包应助小伙子采纳,获得10
7秒前
俊逸沛菡发布了新的文献求助10
7秒前
向建完成签到,获得积分10
7秒前
Miya完成签到,获得积分10
10秒前
liuyun发布了新的文献求助10
10秒前
上官若男应助cz采纳,获得10
11秒前
斯文败类应助小董不懂采纳,获得10
11秒前
张弘发布了新的文献求助10
11秒前
12秒前
脈打完成签到,获得积分10
12秒前
彭于彦祖应助彭彭采纳,获得30
12秒前
诸怀曼完成签到,获得积分10
14秒前
Mandy完成签到,获得积分10
15秒前
Autism完成签到,获得积分10
16秒前
17秒前
18秒前
DTP发布了新的文献求助10
18秒前
迷路雪曼发布了新的文献求助10
19秒前
想吃榴莲发布了新的文献求助30
21秒前
CodeCraft应助舒心的雨双采纳,获得10
21秒前
pluto应助迷路绿凝采纳,获得10
22秒前
24秒前
25秒前
buno应助研友_nvGY4Z采纳,获得10
26秒前
26秒前
27秒前
fancy发布了新的文献求助10
28秒前
28秒前
木三完成签到,获得积分10
28秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3222562
求助须知:如何正确求助?哪些是违规求助? 2871221
关于积分的说明 8174431
捐赠科研通 2538200
什么是DOI,文献DOI怎么找? 1370390
科研通“疑难数据库(出版商)”最低求助积分说明 645783
邀请新用户注册赠送积分活动 619580