锌黄锡矿
载流子寿命
晶界
材料科学
重组
光电子学
光伏系统
载流子
薄膜
限制
微晶
太阳能电池
纳米技术
捷克先令
化学
硅
微观结构
电气工程
复合材料
冶金
机械工程
生物化学
工程类
基因
作者
Jianjun Li,Jialiang Huang,Fa‐Jun Ma,Heng Sun,Jialin Cong,Karen Privat,Yin Yao,Robert Alexander Lee Chin,Mingrui He,Kaiwen Sun,Hui Li,Yaohua Mai,Ziv Hameiri,Nicholas J. Ekins‐Daukes,Richard D. Tilley,Thomas Unold,Martin A. Green,Xiaojing Hao
出处
期刊:Research Square - Research Square
日期:2022-02-09
被引量:1
标识
DOI:10.21203/rs.3.rs-1274090/v1
摘要
Abstract Carrier loss mechanisms at microscopic regions is imperative for high-performance polycrystalline inorganic thin-film solar cells. Despite the progress on Kesterite, a promising environmental-benign and earth-abundant thin-film photovoltaic material, the microscopic carrier loss mechanisms and their impact on device performance remain unknown. Herein, we unveil these mechanisms in state-of-the-art Cu 2 ZnSnSe 4 (CZTSe) solar cells using a framework that links microscopic-structural and optoelectronic characterizations with three-dimensional device simulations. The results indicate the CZTSe films have an encouraging intragrain minority carrier lifetime of >10 ns, a marginal radiative recombination loss through sub-band recombination and electrostatic potential fluctuation, whilst a large effective grain boundary recombination velocity of around 10 4 cm s -1 and a low net carrier density of ~1×10 15 cm -3 . We identify that severe grain boundary recombination and low net carrier density are the current limiting factors of device performance. The established framework can greatly advance the research of kesterite and other emerging photovoltaic materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI