Prediction of wind turbine blade icing fault based on selective deep ensemble model

人工智能 深度学习 计算机科学 人工神经网络 卷积神经网络 循环神经网络 涡轮机 断层(地质) 极限学习机 机器学习 工程类 机械工程 地质学 地震学
作者
Jin Xiao,Chunyan Li,Bo Liu,Jing Huang,Ling Xie
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:242: 108290-108290 被引量:39
标识
DOI:10.1016/j.knosys.2022.108290
摘要

In advance accurate prediction of wind turbine blade icing fault is of fundamental importance. Deep learning is the mainstream prediction technique while existing research about the prediction of wind turbine blade icing fault has primarily derived a single deep learning model. This study introduces the group method of data handling (GMDH) technique and proposes a GMDH-based selective deep ensemble (GSDE) model. First, the model combines the convolution neural network (CNN) with recurrent neural network (RNN), long short-term memory (LSTM), and gated recurrent unit (GRU) to construct CNN–RNN, CNN–LSTM, and CNN–GRU, respectively. Together with CNN, four cost-sensitive deep neural networks based on focal loss are formed and used as the basic prediction models. Second, a series of training sets are constructed by the Chi-square test. Four different basic prediction models are trained on each training set, and the prediction results of all base predictors are obtained. Third, the GMDH technique is applied to the cost-sensitive selective deep ensemble for final prediction results. Experiments are conducted to deeply verify the prediction performance of the GSDE model on two wind turbine datasets collected by the supervisory control and data acquisition (SCADA) system. Results show that the proposed model outperforms five existing ensemble models and five single deep learning models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
霸气的煜祺完成签到,获得积分10
刚刚
1秒前
桐桐应助王一证采纳,获得10
3秒前
yuanyuan发布了新的文献求助30
3秒前
难得糊涂完成签到,获得积分10
3秒前
烂漫问枫关注了科研通微信公众号
4秒前
4秒前
4秒前
4秒前
5秒前
小野人皓宁完成签到,获得积分10
5秒前
在水一方应助Zhang采纳,获得10
5秒前
虎吉发布了新的文献求助10
6秒前
shmily完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
8秒前
ct发布了新的文献求助10
8秒前
勤恳纸鹤完成签到,获得积分10
9秒前
十六籽籽完成签到,获得积分10
10秒前
拾叁发布了新的文献求助10
11秒前
11秒前
11秒前
郑z发布了新的文献求助10
11秒前
12秒前
13秒前
13秒前
大模型应助摩羯座小黄鸭采纳,获得10
14秒前
14秒前
14秒前
阿超发布了新的文献求助10
15秒前
烟花应助SCIER采纳,获得30
15秒前
skyelee完成签到,获得积分10
15秒前
荔荔枝枝发布了新的文献求助10
16秒前
Temperature发布了新的文献求助10
16秒前
16秒前
shiguang110应助小枣采纳,获得10
16秒前
混元形意太极拳完成签到,获得积分10
17秒前
汤汤发布了新的文献求助10
17秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5583739
求助须知:如何正确求助?哪些是违规求助? 4667467
关于积分的说明 14767570
捐赠科研通 4609742
什么是DOI,文献DOI怎么找? 2529456
邀请新用户注册赠送积分活动 1498523
关于科研通互助平台的介绍 1467204