Toward Performing Image Classification and Object Detection With Convolutional Neural Networks in Autonomous Driving Systems: A Survey

卷积神经网络 计算机科学 卷积(计算机科学) 推论 汽车工业 人工智能 上下文图像分类 目标检测 多样性(控制论) 机器学习 对象(语法) 模式识别(心理学) 图像(数学) 人工神经网络 工程类 航空航天工程
作者
Tolga Turay,Tanya Vladimirova
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:10: 14076-14119 被引量:4
标识
DOI:10.1109/access.2022.3147495
摘要

Nowadays Convolutional Neural Networks (CNNs) are being employed in a wide range of industrial technologies for a variety of sectors, such as medical, automotive, aviation, agriculture, space, etc. This paper reviews the state-of-the-art in both the field of CNNs for image classification and object detection and Autonomous Driving Systems (ADSs) in a synergetic way. Layer-based details of CNNs along with parameter and floating-point operation number calculations are outlined. Using an evolutionary approach, the majority of the outstanding image classification CNNs, published in the open literature, is introduced with a focus on their accuracy performance, parameter number, model size, and inference speed, highlighting the progressive developments in convolutional operations. Results of a novel investigation of the convolution types and operations commonly used in CNNs are presented, including a timing analysis aimed at assessing their impact on CNN performance. This extensive experimental study provides new insight into the behaviour of each convolution type in terms of training time, inference time, and layer level decomposition. Building blocks for CNN-based object detection are also discussed, such as backbone networks and baseline types, and then representative state-of-the-art designs are outlined. Experimental results from the literature are summarised for each of the reviewed models. This is followed by an overview of recent ADSs related works and current industry activities, aiming to bridge academic research and industry practice on CNNs and ADSs. Design approaches targeted at solving problems of automakers in achieving real-time implementations are also proposed based on a discussion of design constraints, human vs. machine evaluations and trade-off analysis of accuracy vs. size. Current technologies, promising directions, and expectations from the literature on ADSs are introduced including a comprehensive trade-off analysis from a human-machine perspective.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ready2Brew完成签到,获得积分20
1秒前
jiabu完成签到,获得积分10
2秒前
2秒前
3秒前
英俊的铭应助一轮明月采纳,获得10
3秒前
DW发布了新的文献求助10
3秒前
完美世界应助兴奋千兰采纳,获得10
4秒前
4秒前
5秒前
虚心谷梦发布了新的文献求助10
5秒前
April完成签到,获得积分0
7秒前
7秒前
子车茗应助dablack采纳,获得30
8秒前
完美世界应助fengqing采纳,获得10
9秒前
9秒前
灵巧的谷丝完成签到 ,获得积分10
11秒前
fang完成签到,获得积分10
11秒前
Gzl发布了新的文献求助10
12秒前
一一应助DW采纳,获得10
12秒前
12秒前
完美世界应助DW采纳,获得10
12秒前
13秒前
Tigher完成签到,获得积分20
14秒前
fang发布了新的文献求助10
14秒前
15秒前
今后应助在远方采纳,获得10
15秒前
wanci应助hsh采纳,获得10
16秒前
Yuting发布了新的文献求助10
16秒前
桂源发布了新的文献求助10
19秒前
火星上冬莲完成签到,获得积分20
20秒前
丰富的宛亦完成签到 ,获得积分10
20秒前
20秒前
20秒前
白菜3号完成签到,获得积分10
22秒前
追寻ing发布了新的文献求助10
23秒前
25秒前
机智傀斗完成签到,获得积分10
25秒前
orixero应助研友_8o5V2n采纳,获得50
25秒前
老八完成签到,获得积分10
27秒前
酷波er应助mbf采纳,获得10
27秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3343491
求助须知:如何正确求助?哪些是违规求助? 2970529
关于积分的说明 8644400
捐赠科研通 2650596
什么是DOI,文献DOI怎么找? 1451426
科研通“疑难数据库(出版商)”最低求助积分说明 672118
邀请新用户注册赠送积分活动 661536