Toward Performing Image Classification and Object Detection With Convolutional Neural Networks in Autonomous Driving Systems: A Survey

卷积神经网络 计算机科学 卷积(计算机科学) 推论 汽车工业 人工智能 上下文图像分类 目标检测 多样性(控制论) 机器学习 模式识别(心理学) 图像(数学) 人工神经网络 工程类 航空航天工程
作者
Tolga Turay,Tanya Vladimirova
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:10: 14076-14119 被引量:39
标识
DOI:10.1109/access.2022.3147495
摘要

Nowadays Convolutional Neural Networks (CNNs) are being employed in a wide range of industrial technologies for a variety of sectors, such as medical, automotive, aviation, agriculture, space, etc. This paper reviews the state-of-the-art in both the field of CNNs for image classification and object detection and Autonomous Driving Systems (ADSs) in a synergetic way. Layer-based details of CNNs along with parameter and floating-point operation number calculations are outlined. Using an evolutionary approach, the majority of the outstanding image classification CNNs, published in the open literature, is introduced with a focus on their accuracy performance, parameter number, model size, and inference speed, highlighting the progressive developments in convolutional operations. Results of a novel investigation of the convolution types and operations commonly used in CNNs are presented, including a timing analysis aimed at assessing their impact on CNN performance. This extensive experimental study provides new insight into the behaviour of each convolution type in terms of training time, inference time, and layer level decomposition. Building blocks for CNN-based object detection are also discussed, such as backbone networks and baseline types, and then representative state-of-the-art designs are outlined. Experimental results from the literature are summarised for each of the reviewed models. This is followed by an overview of recent ADSs related works and current industry activities, aiming to bridge academic research and industry practice on CNNs and ADSs. Design approaches targeted at solving problems of automakers in achieving real-time implementations are also proposed based on a discussion of design constraints, human vs. machine evaluations and trade-off analysis of accuracy vs. size. Current technologies, promising directions, and expectations from the literature on ADSs are introduced including a comprehensive trade-off analysis from a human-machine perspective.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YH应助sschen采纳,获得100
刚刚
唐落音完成签到,获得积分10
刚刚
1秒前
fffxuy完成签到 ,获得积分10
1秒前
999999完成签到,获得积分10
1秒前
NexusExplorer应助xiyuexue采纳,获得80
3秒前
千空发布了新的文献求助10
3秒前
现代的访曼应助清辉夜凝采纳,获得20
3秒前
xuxiii完成签到,获得积分10
4秒前
4秒前
5秒前
学术牛马发布了新的文献求助10
5秒前
5秒前
大个应助玛卡巴卡采纳,获得10
5秒前
5秒前
6秒前
ALITTLE完成签到,获得积分10
6秒前
6秒前
Luke完成签到,获得积分10
7秒前
7秒前
rong发布了新的文献求助10
8秒前
8秒前
一颗大树完成签到,获得积分10
8秒前
香蕉觅云应助SunShining采纳,获得10
8秒前
研友_VZG7GZ应助ppxx采纳,获得10
8秒前
9秒前
彭于晏应助123采纳,获得10
9秒前
背后雨柏完成签到 ,获得积分10
10秒前
10秒前
10秒前
13333完成签到,获得积分10
11秒前
12秒前
王士钰完成签到,获得积分10
13秒前
masheng发布了新的文献求助10
13秒前
月月鸟完成签到 ,获得积分10
14秒前
bigpluto发布了新的文献求助10
15秒前
七仔发布了新的文献求助10
15秒前
15秒前
rong完成签到,获得积分10
15秒前
Aurora完成签到,获得积分10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958357
求助须知:如何正确求助?哪些是违规求助? 3504636
关于积分的说明 11119121
捐赠科研通 3235826
什么是DOI,文献DOI怎么找? 1788534
邀请新用户注册赠送积分活动 871232
科研通“疑难数据库(出版商)”最低求助积分说明 802600