Toward Performing Image Classification and Object Detection With Convolutional Neural Networks in Autonomous Driving Systems: A Survey

卷积神经网络 计算机科学 卷积(计算机科学) 推论 汽车工业 人工智能 上下文图像分类 目标检测 多样性(控制论) 机器学习 模式识别(心理学) 图像(数学) 人工神经网络 工程类 航空航天工程
作者
Tolga Turay,Tanya Vladimirova
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:10: 14076-14119 被引量:39
标识
DOI:10.1109/access.2022.3147495
摘要

Nowadays Convolutional Neural Networks (CNNs) are being employed in a wide range of industrial technologies for a variety of sectors, such as medical, automotive, aviation, agriculture, space, etc. This paper reviews the state-of-the-art in both the field of CNNs for image classification and object detection and Autonomous Driving Systems (ADSs) in a synergetic way. Layer-based details of CNNs along with parameter and floating-point operation number calculations are outlined. Using an evolutionary approach, the majority of the outstanding image classification CNNs, published in the open literature, is introduced with a focus on their accuracy performance, parameter number, model size, and inference speed, highlighting the progressive developments in convolutional operations. Results of a novel investigation of the convolution types and operations commonly used in CNNs are presented, including a timing analysis aimed at assessing their impact on CNN performance. This extensive experimental study provides new insight into the behaviour of each convolution type in terms of training time, inference time, and layer level decomposition. Building blocks for CNN-based object detection are also discussed, such as backbone networks and baseline types, and then representative state-of-the-art designs are outlined. Experimental results from the literature are summarised for each of the reviewed models. This is followed by an overview of recent ADSs related works and current industry activities, aiming to bridge academic research and industry practice on CNNs and ADSs. Design approaches targeted at solving problems of automakers in achieving real-time implementations are also proposed based on a discussion of design constraints, human vs. machine evaluations and trade-off analysis of accuracy vs. size. Current technologies, promising directions, and expectations from the literature on ADSs are introduced including a comprehensive trade-off analysis from a human-machine perspective.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
luckzzz发布了新的文献求助10
5秒前
gf完成签到 ,获得积分10
6秒前
cc2713206完成签到,获得积分0
10秒前
乐乐应助luckzzz采纳,获得10
13秒前
19秒前
hi_traffic完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助10
19秒前
22秒前
小乙猪完成签到 ,获得积分0
23秒前
sll完成签到 ,获得积分10
26秒前
文与武完成签到 ,获得积分10
28秒前
悄悄完成签到,获得积分10
32秒前
量子星尘发布了新的文献求助10
41秒前
卷心菜完成签到 ,获得积分10
45秒前
爱睡觉的杨先生完成签到 ,获得积分10
48秒前
李明完成签到 ,获得积分10
49秒前
mzrrong完成签到 ,获得积分10
50秒前
翁雁丝完成签到 ,获得积分10
51秒前
zzz完成签到 ,获得积分10
53秒前
58秒前
1分钟前
1分钟前
1分钟前
Rolling完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
幸福完成签到 ,获得积分10
1分钟前
回忆应助武雨寒采纳,获得10
1分钟前
1分钟前
酷炫映阳完成签到 ,获得积分10
1分钟前
echo完成签到,获得积分10
1分钟前
wangsai0532完成签到,获得积分10
1分钟前
FF完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
shawn完成签到 ,获得积分10
1分钟前
嘟嘟嘟嘟嘟完成签到,获得积分10
1分钟前
奋斗的小研完成签到,获得积分10
1分钟前
耶耶完成签到,获得积分10
1分钟前
濮阳灵竹完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
婉孝完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5628787
求助须知:如何正确求助?哪些是违规求助? 4718375
关于积分的说明 14964910
捐赠科研通 4786643
什么是DOI,文献DOI怎么找? 2555951
邀请新用户注册赠送积分活动 1517087
关于科研通互助平台的介绍 1477841