亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Toward Performing Image Classification and Object Detection With Convolutional Neural Networks in Autonomous Driving Systems: A Survey

卷积神经网络 计算机科学 卷积(计算机科学) 推论 汽车工业 人工智能 上下文图像分类 目标检测 多样性(控制论) 机器学习 模式识别(心理学) 图像(数学) 人工神经网络 工程类 航空航天工程
作者
Tolga Turay,Tanya Vladimirova
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:10: 14076-14119 被引量:39
标识
DOI:10.1109/access.2022.3147495
摘要

Nowadays Convolutional Neural Networks (CNNs) are being employed in a wide range of industrial technologies for a variety of sectors, such as medical, automotive, aviation, agriculture, space, etc. This paper reviews the state-of-the-art in both the field of CNNs for image classification and object detection and Autonomous Driving Systems (ADSs) in a synergetic way. Layer-based details of CNNs along with parameter and floating-point operation number calculations are outlined. Using an evolutionary approach, the majority of the outstanding image classification CNNs, published in the open literature, is introduced with a focus on their accuracy performance, parameter number, model size, and inference speed, highlighting the progressive developments in convolutional operations. Results of a novel investigation of the convolution types and operations commonly used in CNNs are presented, including a timing analysis aimed at assessing their impact on CNN performance. This extensive experimental study provides new insight into the behaviour of each convolution type in terms of training time, inference time, and layer level decomposition. Building blocks for CNN-based object detection are also discussed, such as backbone networks and baseline types, and then representative state-of-the-art designs are outlined. Experimental results from the literature are summarised for each of the reviewed models. This is followed by an overview of recent ADSs related works and current industry activities, aiming to bridge academic research and industry practice on CNNs and ADSs. Design approaches targeted at solving problems of automakers in achieving real-time implementations are also proposed based on a discussion of design constraints, human vs. machine evaluations and trade-off analysis of accuracy vs. size. Current technologies, promising directions, and expectations from the literature on ADSs are introduced including a comprehensive trade-off analysis from a human-machine perspective.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
17秒前
萝卜猪完成签到,获得积分10
38秒前
浮游应助科研通管家采纳,获得10
48秒前
浮游应助科研通管家采纳,获得10
48秒前
浮游应助科研通管家采纳,获得10
48秒前
54秒前
57秒前
1分钟前
FashionBoy应助迅速的岩采纳,获得10
1分钟前
1分钟前
迅速的岩发布了新的文献求助10
1分钟前
1分钟前
在水一方应助迅速的岩采纳,获得10
2分钟前
科研通AI2S应助Yuuw采纳,获得10
2分钟前
YONGGE完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
无虞完成签到,获得积分10
3分钟前
在水一方应助研友_R2D2采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
迅速的岩发布了新的文献求助10
3分钟前
3分钟前
3分钟前
4分钟前
研友_R2D2发布了新的文献求助10
4分钟前
生姜批发刘哥完成签到 ,获得积分0
4分钟前
朴实剑通完成签到 ,获得积分10
4分钟前
梓歆发布了新的文献求助30
4分钟前
九司应助研友_R2D2采纳,获得10
4分钟前
发发完成签到 ,获得积分10
4分钟前
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
打打应助科研通管家采纳,获得10
4分钟前
4分钟前
Alisha完成签到,获得积分10
4分钟前
4分钟前
梓歆发布了新的文献求助10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482463
求助须知:如何正确求助?哪些是违规求助? 4583243
关于积分的说明 14389081
捐赠科研通 4512329
什么是DOI,文献DOI怎么找? 2472860
邀请新用户注册赠送积分活动 1459082
关于科研通互助平台的介绍 1432553