计算机科学
分水岭
造谣
水文模型
基础(线性代数)
事件(粒子物理)
比例(比率)
数据挖掘
人工智能
机器学习
地质学
数学
地图学
地理
气候学
量子力学
物理
万维网
社会化媒体
几何学
标识
DOI:10.1002/(issn)1099-1085
摘要
Graphical Abstract We test a hypothesis that mass conservation constraints restrict a model's ability to compensate for disinformation from input data. Our results are presented generally in terms of constraints enforced on deep learning (DL) and conceptual model architecture. Our findings demonstrate: Conservation may not be a good foundation for watershed scale hydrological theory. Disinformative data is not generally a major source of modelling error. DL models compensate for systematic biases in the input data on a per-event basis.
科研通智能强力驱动
Strongly Powered by AbleSci AI