非视线传播
卡尔曼滤波器
计算机科学
无线
鉴定(生物学)
算法
人工智能
电信
植物
生物
出处
期刊:Cornell University - arXiv
日期:2022-01-01
被引量:3
标识
DOI:10.48550/arxiv.2205.05939
摘要
In wireless positioning systems, non-line-of-sight (NLOS) is a challenging problem. NLOS causes great ranging bias and location error, so NLOS mitigation is essential for high accuracy positioning. In this letter, we propose the Weighted-Least-Squares Robust Kalman Filter (WLS-RKF) for NLOS identification and mitigation. WLS-RKF employs a hypothesis test based on Mahalanobis distance for NLOS identification, and updates the corresponding Kalman filter using the WLS solution. It requires no prior knowledge about NLOS distribution or signal features. We perform simulations and experiments for ultra-wideband (UWB) positioning in various scenarios. The results confirm that WLS-RKF effectively mitigates NLOS error and achieves 5cm positioning accuracy.
科研通智能强力驱动
Strongly Powered by AbleSci AI