Investigating students’ emotional self-efficacy profiles and their relations to self-regulation, motivation, and academic performance in online learning contexts: A person-centered approach

心理学 自我效能感 背景(考古学) 透视图(图形) 学业成绩 社会心理学 自主学习 应用心理学 发展心理学 计算机科学 古生物学 人工智能 生物
作者
Jun Yu,Changqin Huang,Tao He,Xizhe Wang,Linjie Zhang
出处
期刊:Education and Information Technologies [Springer Nature]
卷期号:27 (8): 11715-11740 被引量:11
标识
DOI:10.1007/s10639-022-11099-0
摘要

Emotional self-efficacy is a vital component in student academic engagement and performance, but few studies have identified emotional self-efficacy profiles from a person-centered perspective and examined their relations to self-regulation, motivation and academic performance in online learning environments. To address this gap, we performed latent profile analysis on a dataset of 318 students and identified four profiles, namely, low, average, above average with a low ability to handle the emotions of others and high emotional self-efficacy profiles. The results of a multinomial logistic regression further indicated that self-regulation (i.e., goal setting, time management, task strategies and help seeking) and motivation (i.e., identified regulation and external regulation) played significant roles in determining profile membership. Furthermore, students who possessed high emotional self-efficacy also achieved better academic performance than the other three profiles. The results not only reinforce the understanding of students’ emotional self-efficacy in online learning but also offer researchers both methodological and theoretical insights concerning students’ emotional self-efficacy. Moreover, the study also reveals a potential relationship between leveraging students’ self-regulation and motivation to improve their emotional self-efficacy in an online learning context.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助feike采纳,获得10
刚刚
Kelly1426发布了新的文献求助10
刚刚
小屁孩发布了新的文献求助10
1秒前
1秒前
2秒前
一颗白桃桃完成签到,获得积分10
2秒前
2秒前
2秒前
华仔应助潮汐采纳,获得10
3秒前
3秒前
圆滚滚发布了新的文献求助10
3秒前
王梦秋完成签到 ,获得积分10
4秒前
哲哲发布了新的文献求助10
4秒前
4秒前
Hello应助原始人采纳,获得10
4秒前
锦鲤完成签到 ,获得积分10
4秒前
5秒前
chen发布了新的文献求助10
5秒前
明亮靖柔完成签到,获得积分10
6秒前
儒雅画笔关注了科研通微信公众号
6秒前
6秒前
爆米花应助碧蓝的迎梦采纳,获得10
6秒前
flynn3735发布了新的文献求助10
6秒前
在水一方应助大婷子采纳,获得10
7秒前
7秒前
7秒前
Mia完成签到 ,获得积分10
7秒前
345678与发布了新的文献求助10
7秒前
7秒前
JJJJJJJJJJJ发布了新的文献求助10
7秒前
星辰大海应助无辜的摇伽采纳,获得10
8秒前
雨陌应助九公子采纳,获得10
8秒前
彭于晏应助sssaw采纳,获得10
8秒前
香蕉觅云应助yyyy采纳,获得10
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
9秒前
浮世之笙完成签到,获得积分10
9秒前
jsq发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718656
求助须知:如何正确求助?哪些是违规求助? 5253667
关于积分的说明 15286658
捐赠科研通 4868722
什么是DOI,文献DOI怎么找? 2614394
邀请新用户注册赠送积分活动 1564266
关于科研通互助平台的介绍 1521785